|
|
|
from datasets import Dataset, load_dataset |
|
import pandas as pd |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq, TrainingArguments, Trainer |
|
from peft import LoraConfig, TaskType, get_peft_model, AutoPeftModelForCausalLM |
|
|
|
|
|
df = pd.read_csv('data/riddles_data.csv') |
|
df =df.sample(frac = 1) |
|
|
|
|
|
|
|
df.describe() |
|
|
|
|
|
ds = Dataset.from_pandas(df) |
|
|
|
|
|
ds[:3] |
|
|
|
|
|
llm_model_name="Qwen/Qwen1.5-0.5B-Chat" |
|
model = AutoModelForCausalLM.from_pretrained(llm_model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(llm_model_name,trust_remote_code=True, pad_token='<|endoftext|>') |
|
|
|
tokenizer |
|
|
|
|
|
|
|
def process_func(example): |
|
MAX_LENGTH = 512 |
|
input_ids, attention_mask, labels = [], [], [] |
|
instruction = tokenizer(f"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n猜谜语:\n谜面:{example['riddle']}\n\n谜底是什么?<|im_end|>\n<|im_start|>assistant\n", add_special_tokens=False) |
|
response = tokenizer(f"谜底是:{example['label']}", add_special_tokens=False) |
|
input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id] |
|
attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1] |
|
labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id] |
|
if len(input_ids) > MAX_LENGTH: |
|
input_ids = input_ids[:MAX_LENGTH] |
|
attention_mask = attention_mask[:MAX_LENGTH] |
|
labels = labels[:MAX_LENGTH] |
|
print (f"{tokenizer.decode(input_ids)} Too Long") |
|
return { |
|
"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
"labels": labels |
|
} |
|
|
|
|
|
tokenized_id = ds.map(process_func, remove_columns=ds.column_names) |
|
tokenized_id |
|
|
|
|
|
tokenizer.decode(tokenized_id[0]['input_ids']) |
|
|
|
|
|
tokenizer.decode(list(filter(lambda x: x != -100, tokenized_id[1]["labels"]))) |
|
|
|
|
|
config = LoraConfig( |
|
task_type=TaskType.CAUSAL_LM, |
|
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], |
|
|
|
inference_mode=False, |
|
r=32, |
|
lora_alpha=32, |
|
lora_dropout=0.05 |
|
) |
|
|
|
|
|
|
|
model = get_peft_model(model, config) |
|
config |
|
|
|
|
|
model.print_trainable_parameters() |
|
|
|
|
|
args = TrainingArguments( |
|
output_dir="./Qwen1.5_0.5B_Chat_sft_full", |
|
logging_steps=10, |
|
num_train_epochs=2, |
|
save_steps=10, |
|
learning_rate=1e-4, |
|
save_on_each_node=True, |
|
fp16=False |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=args, |
|
train_dataset=tokenized_id, |
|
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True), |
|
) |
|
|
|
trainer.train(resume_from_checkpoint=True) |
|
|
|
|
|
trainer.save_model("./qwen_sft_full") |
|
|
|
|
|
llm_model_name="Qwen/Qwen1.5-0.5B-Chat" |
|
|
|
|
|
|
|
model = AutoPeftModelForCausalLM.from_pretrained( |
|
"Qwen1.5_0.5B_Chat_sft_full_ckpt_200_ok/checkpoint-210", |
|
|
|
) |
|
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(llm_model_name,trust_remote_code=True, pad_token='<|endoftext|>') |
|
|
|
|
|
|
|
prompt = "谜面:一生受用(猜一字)\n谜底是什么?请解释。" |
|
messages = [ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
|
|
print(text) |
|
model_inputs = tokenizer([text], return_tensors="pt").to("cpu") |
|
|
|
generated_ids = model.generate( |
|
model_inputs.input_ids, |
|
max_new_tokens=128, |
|
do_sample=False, |
|
top_p=0.0 |
|
) |
|
|
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
|
|
response |
|
|
|
|
|
|
|
|
|
|
|
|