File size: 933 Bytes
fdc5e11
90b13c8
eee0150
dcf8cc9
 
 
62062d9
 
dcf8cc9
eee0150
fdc5e11
 
 
dcf8cc9
 
 
6b600ef
4ac0de6
fdc5e11
e6f39bd
cc5377e
 
dcf8cc9
 
 
90ddf19
62062d9
fc0fac4
318c3ac
 
cc5377e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import keras.backend as K
import gradio as gr
import numpy as np
import random
from keras.models import load_model
import cv2
from PIL import Image



def psnr(y_true, y_pred):
    return -10*K.log(K.mean(K.flatten((y_true - y_pred))**2)) / np.log(10)

random.seed(0) # 乱数の種を0にして,乱数を一様にする.
img_width = 256 # 画像の横画素数
img_height = 256 # 画像の縦画素数

model = load_model("./MyNet.h5", custom_objects={'psnr': psnr, 'val_psnr': psnr})

def sepia(inp):
    #sepia_img = cv2.imread(inp)
    sepia_img = np.asarray(inp)
    sepia_img = sepia_img.astype('float32')
    sepia_img = sepia_img / 255.0
    sepia_img = model.predict(sepia_img)
    sepia_img = sepia_img*255
    sepia_img = Image.fromarray(sepia_img)
    sepia_img = sepia_img.reshape(img_height, img_width, 3)
    return sepia_img

demo = gr.Interface(fn=sepia, inputs=gr.inputs.Image(256,256),outputs="image").launch()