File size: 3,043 Bytes
1899d85 8c16ebc d905150 4e2e389 d905150 1899d85 d905150 8c16ebc c0ca22c 88d04c7 d905150 7aeba2e d905150 7aeba2e d905150 88d04c7 d905150 b9b64f9 480e7d1 d905150 7e182e3 8a7486c 3821d52 d905150 1899d85 909e13b a79dc03 a33be90 14f2a96 a33be90 d905150 0b3beca 480e7d1 d905150 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import os, io
import cv2
import gradio as gr
import tensorflow as tf
import urllib.request
import numpy as np
import keras.backend as K
from transformers import pipeline
from PIL import Image
from matplotlib import cm
from tensorflow import keras
resized_shape = (768, 768, 3)
IMG_SCALING = (1, 1)
# # Download the model file
# def download_model():
# url = "https://drive.google.com/uc?id=1FhICkeGn6GcNXWTDn1s83ctC-6Mo1UXk"
# output = "seg_unet_model.h5"
# gdown.download(url, output, quiet=False)
# return output
model_file = "./seg_unet_model.h5"
#Custom objects for model
def Combo_loss(y_true, y_pred, eps=1e-9, smooth=1):
targets = tf.dtypes.cast(K.flatten(y_true), tf.float32)
inputs = tf.dtypes.cast(K.flatten(y_pred), tf.float32)
intersection = K.sum(targets * inputs)
dice = (2. * intersection + smooth) / (K.sum(targets) + K.sum(inputs) + smooth)
inputs = K.clip(inputs, eps, 1.0 - eps)
out = - (ALPHA * ((targets * K.log(inputs)) + ((1 - ALPHA) * (1.0 - targets) * K.log(1.0 - inputs))))
weighted_ce = K.mean(out, axis=-1)
combo = (CE_RATIO * weighted_ce) - ((1 - CE_RATIO) * dice)
return combo
def dice_coef(y_true, y_pred, smooth=1):
y_pred = tf.dtypes.cast(y_pred, tf.int32)
y_true = tf.dtypes.cast(y_true, tf.int32)
intersection = K.sum(y_true * y_pred, axis=[1,2,3])
union = K.sum(y_true, axis=[1,2,3]) + K.sum(y_pred, axis=[1,2,3])
return K.mean((2 * intersection + smooth) / (union + smooth), axis=0)
# Load the model
seg_model = keras.models.load_model('seg_unet_model.h5', custom_objects={'Combo_loss': Combo_loss, 'dice_coef': dice_coef})
inputs = gr.inputs.Image(type="pil", label="Upload an image")
image_output = gr.outputs.Image(type="pil", label="Output Image")
# outputs = gr.outputs.HTML() #uncomment for single class output
def gen_pred(img, model=seg_model):
# pil_image = img.convert('RGB')
# open_cv_image = np.array(pil_image)
# img = open_cv_image[:, :, ::-1].copy()
# # img = cv2.imread("./003e2c95d.jpg")
img = img[::IMG_SCALING[0], ::IMG_SCALING[1]]
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = img/255
img = tf.expand_dims(img, axis=0)
pred = model.predict(img)
pred = np.squeeze(pred, axis=0)
print(len(pred))
print(max(pred))
img_bytes = pred.tobytes()
nparr = np.frombuffer(img_bytes, np.byte)
pred_pil = cv2.imdecode(nparr, cv2.IMREAD_REDUCED_COLOR_8)
# return "UI in developing process ..."
return pred_pil
title = "<h1 style='text-align: center;'>Semantic Segmentation</h1>"
description = "Upload an image and get prediction mask"
# css_code='body{background-image:url("file=wave.mp4");}'
gr.Interface(fn=gen_pred,
inputs=[gr.Image()],
outputs='image',
title=title,
examples=[["003e2c95d.jpg"], ["003b50a15.jpg"], ["003b48a9e.jpg"], ["0038cbe45.jpg"], ["00371aa92.jpg"]],
description=description,
enable_queue=True).launch() |