Spaces:
Sleeping
Sleeping
from flask import Flask, request, jsonify | |
from langchain_community.llms import LlamaCpp | |
from sentence_transformers import SentenceTransformer | |
from transformers import AutoTokenizer, AutoModel | |
from huggingface_hub import hf_hub_download, HfApi | |
# cosine_similarity | |
import torch | |
from torch.nn.functional import cosine_similarity | |
import os | |
app = Flask(__name__) | |
n_gpu_layers = 0 | |
n_batch = 1024 | |
# تنزيل النموذج باستخدام معالجة الأخطاء | |
try: | |
model_path = hf_hub_download(repo_id="repo_name", filename="model_file_name", force_download=True) | |
except Exception as e: | |
print(f"Error downloading the model: {e}") | |
model_path = None | |
# تأكد من أن النموذج تم تنزيله بنجاح | |
if model_path: | |
llm = LlamaCpp( | |
model_path=model_path, # path to GGUF file | |
temperature=0.1, | |
n_gpu_layers=n_gpu_layers, | |
n_batch=n_batch, | |
verbose=True, | |
n_ctx=4096 | |
) | |
model0 = AutoModel.from_pretrained('sentence-transformers/paraphrase-TinyBERT-L6-v2') | |
model = SentenceTransformer('sentence-transformers/paraphrase-TinyBERT-L6-v2') | |
file_size = os.stat('Phi-3-mini-4k-instruct-q4.gguf') | |
print("model size ====> :", file_size.st_size, "bytes") | |
def get_skills(): | |
cv_body = request.json.get('cv_body') | |
# Simple inference example | |
output = llm( | |
f"\n{cv_body}\nCan you list the skills mentioned in the CV?", | |
max_tokens=256, # Generate up to 256 tokens | |
stop=[""], | |
echo=True, # Whether to echo the prompt | |
) | |
return jsonify({'skills': output}) | |
def health(): | |
return jsonify({'status': 'Worked'}) | |
def compare(): | |
employee_skills = request.json.get('employee_skills') # string | |
jobs_skills = request.json.get('jobs_skills') # list of strings | |
if not isinstance(jobs_skills, list) or not all(isinstance(skill, str) for skill in jobs_skills): | |
raise ValueError("jobs_skills must be a list of strings") | |
job_embeddings = model.encode(jobs_skills) | |
employee_embeddings = model.encode(employee_skills) | |
sim = [] | |
employee_embeddings_tensor = torch.from_numpy(employee_embeddings).unsqueeze(0) | |
for job_e in job_embeddings: | |
job_e_tensor = torch.from_numpy(job_e).unsqueeze(0) | |
sim.append(cosine_similarity(employee_embeddings_tensor, job_e_tensor, dim=1)) | |
max_sim = max(sim) | |
index = sim.index(max_sim) | |
return jsonify({'job': jobs_skills[index]}) | |
def list_models(): | |
hf_api = HfApi() | |
models = hf_api.list_models() | |
return jsonify({'models': models}) | |
if __name__ == '__main__': | |
app.run() | |