Spaces:
Sleeping
Sleeping
File size: 28,108 Bytes
6b52889 d310413 6b52889 8afa4d1 6b52889 06ba967 6b52889 8afa4d1 6b52889 3e30e95 8afa4d1 6b52889 8afa4d1 6b52889 8afa4d1 6b52889 8afa4d1 6b52889 8afa4d1 6b52889 8afa4d1 6b52889 8afa4d1 a7c179a 6b52889 06ba967 6b52889 a7c179a 06ba967 6b52889 8f2f623 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 |
# Consolidated Streamlit App
import streamlit as st
import subprocess
# Title and introduction
st.title("Workout Tracker")
st.markdown("""
Welcome to the **Workout Tracker App**!
Select your desired workout below, and the app will guide you through the exercise with real-time feedback.
""")
# Workout options
st.header("Choose Your Workout")
workout_option = st.selectbox(
"Available Workouts:",
["Bicep Curl", "Lateral Raise", "Shoulder Press"]
)
# Button to start the workout
if st.button("Start Workout"):
st.write(f"Starting {workout_option}...")
# Map the workout to the corresponding script
workout_scripts = {
"Bicep Curl": "bicep_curl.py",
"Lateral Raise": "lateral_raise.py",
"Shoulder Press": "shoulder_press.py",
}
selected_script = workout_scripts.get(workout_option)
# Run the corresponding script
try:
subprocess.run(["python", selected_script], check=True)
st.success(f"{workout_option} workout completed! Check the feedback on your terminal.")
except subprocess.CalledProcessError as e:
st.error(f"An error occurred while running {workout_option}. Please try again.")
except FileNotFoundError:
st.error(f"Workout script {selected_script} not found! Ensure the file exists in the same directory.")
# Footer
st.markdown("""
---
**Note**: Close the workout window or press "q" in the camera feed to stop the workout.
""")
# From bicep_with_feedback.py
import cv2
import mediapipe as mp
import numpy as np
import time
from sklearn.ensemble import IsolationForest
# Mediapipe utilities
mp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.pose
# Function to calculate angles between three points
def calculate_angle(a, b, c):
a = np.array(a)
b = np.array(b)
c = np.array(c)
radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0])
angle = np.abs(np.degrees(radians))
if angle > 180.0:
angle = 360 - angle
return angle
# Function to draw text with a background
def draw_text_with_background(image, text, position, font, font_scale, color, thickness, bg_color, padding=10):
text_size = cv2.getTextSize(text, font, font_scale, thickness)[0]
text_x, text_y = position
box_coords = (
(text_x - padding, text_y - padding),
(text_x + text_size[0] + padding, text_y + text_size[1] + padding),
)
cv2.rectangle(image, box_coords[0], box_coords[1], bg_color, cv2.FILLED)
cv2.putText(image, text, (text_x, text_y + text_size[1]), font, font_scale, color, thickness)
# Real-time feedback for single rep
def analyze_single_rep(rep, rep_data):
"""Provide actionable feedback for a single rep."""
feedback = []
avg_rom = np.mean([r["ROM"] for r in rep_data])
avg_tempo = np.mean([r["Tempo"] for r in rep_data])
avg_smoothness = np.mean([r["Smoothness"] for r in rep_data])
if rep["ROM"] < avg_rom * 0.8:
feedback.append("Extend arm more")
if rep["Tempo"] < avg_tempo * 0.8:
feedback.append("Slow down")
if rep["Smoothness"] > avg_smoothness * 1.2:
feedback.append("Move smoothly")
return " | ".join(feedback) if feedback else "Good rep!"
# Post-workout feedback function with Isolation Forest
def analyze_workout_with_isolation_forest(rep_data):
if not rep_data:
print("No reps completed.")
return
print("\n--- Post-Workout Summary ---")
# Convert rep_data to a feature matrix
features = np.array([[rep["ROM"], rep["Tempo"], rep["Smoothness"]] for rep in rep_data])
# Train Isolation Forest
model = IsolationForest(contamination=0.2, random_state=42)
predictions = model.fit_predict(features)
# Analyze reps
for i, (rep, prediction) in enumerate(zip(rep_data, predictions), 1):
status = "Good" if prediction == 1 else "Anomalous"
reason = []
if prediction == -1: # If anomalous
if rep["ROM"] < np.mean(features[:, 0]) - np.std(features[:, 0]):
reason.append("Low ROM")
if rep["Tempo"] < np.mean(features[:, 1]) - np.std(features[:, 1]):
reason.append("Too Fast")
if rep["Smoothness"] > np.mean(features[:, 2]) + np.std(features[:, 2]):
reason.append("Jerky Movement")
reason_str = ", ".join(reason) if reason else "None"
print(f"Rep {i}: {status} | ROM: {rep['ROM']:.2f}, Tempo: {rep['Tempo']:.2f}s, Smoothness: {rep['Smoothness']:.2f} | Reason: {reason_str}")
# Main workout tracking function
def main():
cap = cv2.VideoCapture(0)
counter = 0 # Rep counter
stage = None # Movement stage
max_reps = 10
rep_data = [] # Store metrics for each rep
feedback = "" # Real-time feedback for the video feed
workout_start_time = None # Timer start
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
while cap.isOpened():
ret, frame = cap.read()
if not ret:
print("Failed to grab frame.")
break
# Initialize workout start time
if workout_start_time is None:
workout_start_time = time.time()
# Timer
elapsed_time = time.time() - workout_start_time
timer_text = f"Timer: {int(elapsed_time)}s"
# Convert frame to RGB
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image.flags.writeable = False
results = pose.process(image)
# Convert back to BGR
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Check if pose landmarks are detected
if results.pose_landmarks:
landmarks = results.pose_landmarks.landmark
# Extract key joints
shoulder = [
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y
]
elbow = [
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y
]
wrist = [
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y
]
# Check visibility of key joints
visibility_threshold = 0.5
if (landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].visibility < visibility_threshold or
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].visibility < visibility_threshold or
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].visibility < visibility_threshold):
draw_text_with_background(image, "Ensure all key joints are visible!", (50, 150),
cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 5, (0, 0, 255))
cv2.imshow('Workout Feedback', image)
continue # Skip processing if joints are not visible
# Calculate the angle
angle = calculate_angle(shoulder, elbow, wrist)
# Stage logic for counting reps
if angle > 160 and stage != "down":
stage = "down"
start_time = time.time() # Start timing for the rep
start_angle = angle # Record the starting angle
# Stop the program if it's the 10th rep down stage
if counter == max_reps:
print("Workout complete at rep 10 (down stage)!")
break
elif angle < 40 and stage == "down":
stage = "up"
counter += 1
end_time = time.time() # End timing for the rep
end_angle = angle # Record the ending angle
# Calculate rep metrics
rom = start_angle - end_angle # Range of Motion
tempo = end_time - start_time # Duration of the rep
smoothness = np.std([start_angle, end_angle]) # Dummy smoothness metric
rep_data.append({"ROM": rom, "Tempo": tempo, "Smoothness": smoothness})
# Analyze the rep using Isolation Forest
feedback = analyze_single_rep(rep_data[-1], rep_data)
# Wireframe color based on form
wireframe_color = (0, 255, 0) if stage == "up" or stage == "down" else (0, 0, 255)
# Draw wireframe
mp_drawing.draw_landmarks(
image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=wireframe_color, thickness=5, circle_radius=4),
mp_drawing.DrawingSpec(color=wireframe_color, thickness=5, circle_radius=4)
)
# Display reps, stage, timer, and feedback
draw_text_with_background(image, f"Reps: {counter}", (50, 150),
cv2.FONT_HERSHEY_SIMPLEX, 3, (255, 255, 255), 5, (0, 0, 0))
draw_text_with_background(image, f"Stage: {stage if stage else 'N/A'}", (50, 300),
cv2.FONT_HERSHEY_SIMPLEX, 3, (255, 255, 255), 5, (0, 0, 0))
draw_text_with_background(image, timer_text, (1000, 50), # Timer in the top-right corner
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 3, (0, 0, 0))
draw_text_with_background(image, feedback, (50, 450),
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 3, (0, 0, 0))
# Show video feed
cv2.imshow('Workout Feedback', image)
# Break if 'q' is pressed
if cv2.waitKey(10) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
# Post-workout analysis
analyze_workout_with_isolation_forest(rep_data)
if __name__ == "__main__":
main()
# From lateral_raise.py
import cv2
import mediapipe as mp
import numpy as np
import time
from sklearn.ensemble import IsolationForest
# Mediapipe utilities
mp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.pose
# Function to calculate lateral raise angle
def calculate_angle_for_lateral_raise(shoulder, wrist):
"""
Calculate the angle of the arm relative to the horizontal plane
passing through the shoulder.
"""
horizontal_reference = np.array([1, 0]) # Horizontal vector
arm_vector = np.array([wrist[0] - shoulder[0], wrist[1] - shoulder[1]])
dot_product = np.dot(horizontal_reference, arm_vector)
magnitude_reference = np.linalg.norm(horizontal_reference)
magnitude_arm = np.linalg.norm(arm_vector)
if magnitude_arm == 0 or magnitude_reference == 0:
return 0
cos_angle = dot_product / (magnitude_reference * magnitude_arm)
angle = np.arccos(np.clip(cos_angle, -1.0, 1.0))
return np.degrees(angle)
# Function to draw text with a background
def draw_text_with_background(image, text, position, font, font_scale, color, thickness, bg_color, padding=10):
text_size = cv2.getTextSize(text, font, font_scale, thickness)[0]
text_x, text_y = position
box_coords = (
(text_x - padding, text_y - padding),
(text_x + text_size[0] + padding, text_y + text_size[1] + padding),
)
cv2.rectangle(image, box_coords[0], box_coords[1], bg_color, cv2.FILLED)
cv2.putText(image, text, (text_x, text_y + text_size[1]), font, font_scale, color, thickness)
# Function to check if all required joints are visible
def are_key_joints_visible(landmarks, visibility_threshold=0.5):
"""
Ensure that all required joints are visible based on their visibility scores.
"""
required_joints = [
mp_pose.PoseLandmark.LEFT_SHOULDER.value,
mp_pose.PoseLandmark.RIGHT_SHOULDER.value,
mp_pose.PoseLandmark.LEFT_WRIST.value,
mp_pose.PoseLandmark.RIGHT_WRIST.value,
]
for joint in required_joints:
if landmarks[joint].visibility < visibility_threshold:
return False
return True
# Real-time feedback for single rep
def analyze_single_rep(rep, rep_data):
"""Provide actionable feedback for a single rep."""
feedback = []
# Calculate averages from previous reps
avg_rom = np.mean([r["ROM"] for r in rep_data]) if rep_data else 0
avg_tempo = np.mean([r["Tempo"] for r in rep_data]) if rep_data else 0
# Dynamic tempo thresholds
lower_tempo_threshold = 2.0 # Minimum grace threshold for faster tempo
upper_tempo_threshold = 9.0 # Maximum grace threshold for slower tempo
# Adjust thresholds after a few reps
if len(rep_data) > 3:
lower_tempo_threshold = max(2.0, avg_tempo * 0.7)
upper_tempo_threshold = min(9.0, avg_tempo * 1.3)
# Feedback for ROM
if rep["ROM"] < 30: # Minimum ROM threshold
feedback.append("Lift arm higher")
elif rep_data and rep["ROM"] < avg_rom * 0.8:
feedback.append("Increase ROM")
# Feedback for Tempo
if rep["Tempo"] < lower_tempo_threshold: # Tempo too fast
feedback.append("Slow down")
elif rep["Tempo"] > upper_tempo_threshold: # Tempo too slow
feedback.append("Speed up")
return feedback
# Post-workout feedback function
def analyze_workout_with_isolation_forest(rep_data):
if not rep_data:
print("No reps completed.")
return
print("\n--- Post-Workout Summary ---")
# Filter valid reps for recalculating thresholds
valid_reps = [rep for rep in rep_data if rep["ROM"] > 20] # Ignore very low ROM reps
if not valid_reps:
print("No valid reps to analyze.")
return
features = np.array([[rep["ROM"], rep["Tempo"]] for rep in valid_reps])
avg_rom = np.mean(features[:, 0])
avg_tempo = np.mean(features[:, 1])
std_rom = np.std(features[:, 0])
std_tempo = np.std(features[:, 1])
# Adjusted bounds for anomalies
rom_lower_bound = max(20, avg_rom - std_rom * 2)
tempo_lower_bound = max(1.0, avg_tempo - std_tempo * 2)
tempo_upper_bound = min(10.0, avg_tempo + std_tempo * 2)
print(f"ROM Lower Bound: {rom_lower_bound}")
print(f"Tempo Bounds: {tempo_lower_bound}-{tempo_upper_bound}")
# Anomaly detection
for i, rep in enumerate(valid_reps, 1):
feedback = []
if rep["ROM"] < rom_lower_bound:
feedback.append("Low ROM")
if rep["Tempo"] < tempo_lower_bound:
feedback.append("Too Fast")
elif rep["Tempo"] > tempo_upper_bound:
feedback.append("Too Slow")
if feedback:
print(f"Rep {i}: Anomalous | Feedback: {', '.join(feedback[:1])}")
# Use Isolation Forest for secondary anomaly detection
model = IsolationForest(contamination=0.1, random_state=42) # Reduced contamination
predictions = model.fit_predict(features)
for i, prediction in enumerate(predictions, 1):
if prediction == -1: # Outlier
print(f"Rep {i}: Isolation Forest flagged this rep as anomalous.")
# Main workout tracking function
def main():
cap = cv2.VideoCapture(0)
counter = 0 # Rep counter
stage = None # Movement stage
feedback = [] # Real-time feedback for the video feed
rep_data = [] # Store metrics for each rep
angles_during_rep = [] # Track angles during a single rep
workout_start_time = None # Timer start
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
while cap.isOpened():
ret, frame = cap.read()
if not ret:
print("Failed to grab frame.")
break
# Initialize workout start time
if workout_start_time is None:
workout_start_time = time.time()
# Timer
elapsed_time = time.time() - workout_start_time
timer_text = f"Timer: {int(elapsed_time)}s"
# Convert the image to RGB
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image.flags.writeable = False
results = pose.process(image)
# Convert back to BGR
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Check if pose landmarks are detected
if results.pose_landmarks:
landmarks = results.pose_landmarks.landmark
# Check if key joints are visible
if not are_key_joints_visible(landmarks):
draw_text_with_background(
image, "Ensure all joints are visible", (50, 50),
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 255)
)
cv2.imshow("Lateral Raise Tracker", image)
continue
# Extract key joints
left_shoulder = [
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y,
]
left_wrist = [
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y,
]
# Calculate angle for lateral raise
angle = calculate_angle_for_lateral_raise(left_shoulder, left_wrist)
# Track angles during a rep
if stage == "up" or stage == "down":
angles_during_rep.append(angle)
# Stage logic for counting reps
if angle < 20 and stage != "down":
stage = "down"
if counter == 10: # Stop on the down stage of the 10th rep
print("Workout complete! 10 reps reached.")
break
# Calculate ROM for the completed rep
if len(angles_during_rep) > 1:
rom = max(angles_during_rep) - min(angles_during_rep)
else:
rom = 0.0
tempo = elapsed_time
print(f"Rep {counter + 1}: ROM={rom:.2f}, Tempo={tempo:.2f}s")
# Record metrics for the rep
rep_data.append({
"ROM": rom,
"Tempo": tempo,
})
# Reset angles and timer for the next rep
angles_during_rep = []
workout_start_time = time.time() # Reset timer
if 70 <= angle <= 110 and stage == "down":
stage = "up"
counter += 1
# Analyze feedback
feedback = analyze_single_rep(rep_data[-1], rep_data)
# Determine wireframe color
wireframe_color = (0, 255, 0) if not feedback else (0, 0, 255)
# Display feedback
draw_text_with_background(image, f"Reps: {counter}", (50, 50),
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 0))
draw_text_with_background(image, " | ".join(feedback), (50, 120),
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 0))
draw_text_with_background(image, timer_text, (50, 190),
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 0))
# Render detections with wireframe color
mp_drawing.draw_landmarks(
image,
results.pose_landmarks,
mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=wireframe_color, thickness=2, circle_radius=2),
mp_drawing.DrawingSpec(color=wireframe_color, thickness=2, circle_radius=2),
)
# Display the image
cv2.imshow("Lateral Raise Tracker", image)
if cv2.waitKey(10) & 0xFF == ord("q"):
break
cap.release()
cv2.destroyAllWindows()
# Post-workout analysis
analyze_workout_with_isolation_forest(rep_data)
if __name__ == "__main__":
main()
# From shoulder_press.py
import cv2
import mediapipe as mp
import numpy as np
import time
# Mediapipe utilities
mp_drawing = mp.solutions.drawing_utils
mp_pose = mp.solutions.pose
# Function to calculate angles
def calculate_angle(point_a, point_b, point_c):
vector_ab = np.array([point_a[0] - point_b[0], point_a[1] - point_b[1]])
vector_cb = np.array([point_c[0] - point_b[0], point_c[1] - point_b[1]])
dot_product = np.dot(vector_ab, vector_cb)
magnitude_ab = np.linalg.norm(vector_ab)
magnitude_cb = np.linalg.norm(vector_cb)
if magnitude_ab == 0 or magnitude_cb == 0:
return 0
cos_angle = dot_product / (magnitude_ab * magnitude_cb)
angle = np.arccos(np.clip(cos_angle, -1.0, 1.0))
return np.degrees(angle)
# Function to check if all required joints are visible
def are_key_joints_visible(landmarks, visibility_threshold=0.5):
required_joints = [
mp_pose.PoseLandmark.LEFT_SHOULDER.value,
mp_pose.PoseLandmark.RIGHT_SHOULDER.value,
mp_pose.PoseLandmark.LEFT_ELBOW.value,
mp_pose.PoseLandmark.RIGHT_ELBOW.value,
mp_pose.PoseLandmark.LEFT_WRIST.value,
mp_pose.PoseLandmark.RIGHT_WRIST.value,
]
for joint in required_joints:
if landmarks[joint].visibility < visibility_threshold:
return False
return True
# Function to draw text with a background
def draw_text_with_background(image, text, position, font, font_scale, color, thickness, bg_color, padding=10):
text_size = cv2.getTextSize(text, font, font_scale, thickness)[0]
text_x, text_y = position
box_coords = (
(text_x - padding, text_y - padding),
(text_x + text_size[0] + padding, text_y + text_size[1] + padding),
)
cv2.rectangle(image, box_coords[0], box_coords[1], bg_color, cv2.FILLED)
cv2.putText(image, text, (text_x, text_y + text_size[1]), font, font_scale, color, thickness)
# Main workout tracking function
def main():
cap = cv2.VideoCapture(0)
counter = 0
stage = None
feedback = ""
workout_start_time = None
rep_start_time = None
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
while cap.isOpened():
ret, frame = cap.read()
if not ret:
print("Failed to grab frame.")
break
# Initialize workout start time
if workout_start_time is None:
workout_start_time = time.time()
# Timer
elapsed_time = time.time() - workout_start_time
timer_text = f"Timer: {int(elapsed_time)}s"
# Convert the image to RGB
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image.flags.writeable = False
results = pose.process(image)
# Convert back to BGR
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Check if pose landmarks are detected
if results.pose_landmarks:
landmarks = results.pose_landmarks.landmark
# Check if key joints are visible
if not are_key_joints_visible(landmarks):
feedback = "Ensure all joints are visible"
draw_text_with_background(
image, feedback, (50, 50),
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 255)
)
cv2.imshow("Shoulder Press Tracker", image)
continue
# Extract key joints for both arms
left_shoulder = [
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y,
]
left_elbow = [
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y,
]
left_wrist = [
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y,
]
right_shoulder = [
landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].x,
landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y,
]
right_elbow = [
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value].x,
landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value].y,
]
right_wrist = [
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x,
landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y,
]
# Calculate angles
left_elbow_angle = calculate_angle(left_shoulder, left_elbow, left_wrist)
right_elbow_angle = calculate_angle(right_shoulder, right_elbow, right_wrist)
# Check starting and ending positions
if 80 <= left_elbow_angle <= 100 and 80 <= right_elbow_angle <= 100 and stage != "down":
stage = "down"
if counter == 10:
feedback = "Workout complete! 10 reps done."
draw_text_with_background(image, feedback, (50, 120),
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 255))
cv2.imshow("Shoulder Press Tracker", image)
break
if rep_start_time is not None:
tempo = time.time() - rep_start_time
feedback = f"Rep {counter} completed! Tempo: {tempo:.2f}s"
rep_start_time = None
elif left_elbow_angle > 160 and right_elbow_angle > 160 and stage == "down":
stage = "up"
counter += 1
rep_start_time = time.time()
# Wireframe color
wireframe_color = (0, 255, 0) if "completed" in feedback or "Good" in feedback else (0, 0, 255)
# Display feedback
draw_text_with_background(image, f"Reps: {counter}", (50, 50),
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 0))
draw_text_with_background(image, feedback, (50, 120),
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 0))
draw_text_with_background(image, timer_text, (50, 190),
cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 2, (0, 0, 0))
# Render detections with wireframe color
mp_drawing.draw_landmarks(
image,
results.pose_landmarks,
mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=wireframe_color, thickness=2, circle_radius=2),
mp_drawing.DrawingSpec(color=wireframe_color, thickness=2, circle_radius=2),
)
# Display the image
cv2.imshow("Shoulder Press Tracker", image)
if cv2.waitKey(10) & 0xFF == ord("q"):
break
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
main()
|