speechbrainteam's picture
Update README.md
5ad1d36
|
raw
history blame
3.79 kB
metadata
language: fr
thumbnail: null
tags:
  - automatic-speech-recognition
  - CTC
  - Attention
  - pytorch
  - speechbrain
license: apache-2.0
datasets:
  - common_voice
metrics:
  - wer
  - cer


CRDNN with CTC/Attention trained on CommonVoice French (No LM)

This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on CommonVoice (French Language) within SpeechBrain. For a better experience, we encourage you to learn more about SpeechBrain.

The performance of the model is the following:

Release Test CER Test WER GPUs
07-03-21 6.54 17.70 2xV100 16GB

Pipeline description

This ASR system is composed of 2 different but linked blocks:

  • Tokenizer (unigram) that transforms words into subword units and trained with the train transcriptions (train.tsv) of CommonVoice (FR).
  • Acoustic model (CRDNN + CTC/Attention). The CRDNN architecture is made of N blocks of convolutional neural networks with normalization and pooling on the frequency domain. Then, a bidirectional LSTM is connected to a final DNN to obtain the final acoustic representation that is given to the CTC and attention decoders.

Install SpeechBrain

First of all, please install SpeechBrain with the following command:

pip install speechbrain

Please notice that we encourage you to read our tutorials and learn more about SpeechBrain.

Transcribing your own audio files (in French)

from speechbrain.pretrained import EncoderDecoderASR

asr_model = EncoderDecoderASR.from_hparams(source="speechbrain/asr-crdnn-commonvoice-fr", savedir="pretrained_models/asr-crdnn-commonvoice-fr")
asr_model.transcribe_file("speechbrain/asr-crdnn-commonvoice-fr/example-fr.wav")

Inference on GPU

To perform inference on the GPU, add run_opts={"device":"cuda"} when calling the from_hparams method.

Limitations

The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.

Training

The model was trained with SpeechBrain (Hash). To train it from scratch follows these steps:

  1. Clone SpeechBrain:
git clone https://github.com/speechbrain/speechbrain/
  1. Install it:
cd speechbrain
pip install -r requirements.txt
pip install -e .
  1. Run Training:
cd recipes/LibriSpeech/ASR/seq2seq/
python train.py hparams/train.yaml --data_folder=your_data_folder

You can find our training results (models, logs, etc) here

Referencing SpeechBrain

@misc{SB2021,
    author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
    title = {SpeechBrain},
    year = {2021},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\\url{https://github.com/speechbrain/speechbrain}},
  }

About SpeechBrain

SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.

Website: https://speechbrain.github.io/

GitHub: https://github.com/speechbrain/speechbrain