coencoder_test2_phase1_2 / modeling_co_encoder.py
sudy-super's picture
Upload model and tokenizers
aee9709 verified
# coding=utf-8
"""PyTorch CoEncoder model."""
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from transformers import PreTrainedModel
from transformers.activations import ACT2FN
from transformers.image_processing_utils import select_best_resolution
from transformers.modeling_outputs import ModelOutput
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs, _flash_attention_forward
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10
)
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM
from .configuration_co_encoder import CoEncoderConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "CoEncoderConfig"
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
@dataclass
class CoEncoderCausalLMOutputWithPast(ModelOutput):
"""
Base class for CoEncoder causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.context_config.num_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
context_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size (batch_size, sequence_length, hidden_size)`.
context_hidden_states of the model produced by the context encoder and after projecting the last hidden state.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
context_hidden_states: Optional[torch.FloatTensor] = None
class CoEncoderDynamicAttention(nn.Module):
"""
Attention mechanism adapted for dynamic output size based on Mistral's architecture. This attention layer computes
the output attention scores which are used to determine the pooling size dynamically.
"""
def __init__(self, config: CoEncoderConfig):
super().__init__()
self.hidden_size = config.context_config.hidden_size
self.num_heads = config.context_config.num_attention_heads
self.head_dim = getattr(config.context_config, "head_dim", self.hidden_size // self.num_heads)
self.num_key_value_heads = config.context_config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
# Query, Key, Value, and Output Projections
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, 1, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
):
# Get input dimensions
bsz, seq_len, hidden_size = hidden_states.size()
# Query, Key, Value projections
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# Reshape and transpose to [batch_size, num_heads, seq_len, head_dim]
query_states = query_states.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# Repeat key and value states for multi-head attention
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
# Compute attention scores
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# Apply softmax to get attention probabilities
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
# Apply attention to values
attn_output = torch.matmul(attn_weights, value_states)
# Reshape attention output
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, seq_len, -1)
# Project to output dimension
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
class CoEncoderDynamicFlashAttention2(CoEncoderDynamicAttention):
def __init__(self, config: CoEncoderConfig):
super().__init__(config)
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
self.is_causal = False # Assuming non-causal attention for this context
self.config = config
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
):
output_attentions = False
# Get input dimensions
bsz, seq_len, hidden_size = hidden_states.size()
q_len = seq_len
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# Repeat key and value states for multi-head attention
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seem to be silently casted in float32, which might be related to"
f" upcasted embedding or layer norm layers in float32. Casting back the input to {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
# Define attention_mask assuming all positions are valid
# because flash_attn does not support custom attention_mask
attention_mask = None
# Define other required variables
position_ids = None
dropout_rate = getattr(self.config.context_config, "attention_dropout", 0.0)
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
position_ids=position_ids,
dropout=dropout_rate,
sliding_window=getattr(self, "sliding_window", None),
use_top_left_mask=self._flash_attn_uses_top_left_mask,
is_causal=self.is_causal,
)
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
class CoEncoderDynamicWeightedAvgPool1d(nn.Module):
"""
A module that dynamically determines the output size based on input
and performs weighted average pooling with separate attention mechanisms
for output size estimation and weighted pooling.
"""
def __init__(self, config, output_size_min=32, output_size_max=131072):
super().__init__()
# Attention mechanism for estimating output size
self.size_estimation_attention = CoEncoderDynamicFlashAttention2(config)
# Attention mechanism for weighted pooling
self.weighted_pooling_attention = CoEncoderDynamicFlashAttention2(config)
self.output_size_min = output_size_min
self.output_size_max = (
config.context_config.max_position_embeddings if config.context_config.max_position_embeddings is not None else output_size_max
)
self.scale_param = nn.Parameter(torch.tensor(0.01))
def forward(self, hidden_states):
"""
Args:
x: Input tensor of shape (batch_size, seq_len, hidden_size)
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
- pooled_output: Padded tensor of compressed sequences (batch_size, max_pooled_len, hidden_size)
- attention_mask: Binary mask indicating valid tokens (batch_size, max_pooled_len)
- dynamic_output_sizes: Dynamic output sizes for each batch (batch_size,)
"""
batch_size, seq_len, hidden_size = hidden_states.size()
device = hidden_states.device
# Estimate output size using attention mechanism
# attn_output_size: (batch_size, seq_len, 1)
attn_output_size, _ = self.size_estimation_attention(hidden_states)
# Calculate dynamic output sizes for each batch item
# (batch_size, seq_len, 1) -> (batch_size, 1)
batch_attn_means = torch.sigmoid(attn_output_size).mean(dim=1)
scaled_batch_means = batch_attn_means * self.scale_param.to(batch_attn_means.dtype)
# Calculate dynamic output sizes (batch_size,)
dynamic_output_sizes = (
(scaled_batch_means * (self.output_size_max - self.output_size_min)) + self.output_size_min
).int().squeeze(-1)
# Get the maximum output size across the batch
max_pooled_len = dynamic_output_sizes.max().item()
# Compute attention weights for weighted pooling
# attn_output_weights: (batch_size, seq_len, 1)
attn_output_weights, _ = self.weighted_pooling_attention(hidden_states)
# Normalize with sigmoid function for use as weights
# attention_weights: (batch_size, seq_len)
attention_weights = torch.sigmoid(attn_output_weights).squeeze(-1)
# Initialize output tensors
# pooled_output: (batch_size, max_pooled_len, hidden_size)
pooled_output = torch.zeros(batch_size, max_pooled_len, hidden_size, device=device, dtype=hidden_states.dtype)
# attention_mask: (batch_size, max_pooled_len)
attention_mask = torch.zeros(batch_size, max_pooled_len, dtype=torch.bool, device=device)
for batch_idx in range(batch_size):
output_size = dynamic_output_sizes[batch_idx].item()
item_input = hidden_states[batch_idx] # Shape: (seq_len, hidden_size)
item_weights = attention_weights[batch_idx] # Shape: (seq_len)
# print(f"Sequence lenfth of context: {item_input.size(0)}")
# print(f"Output length: {output_size}")
# Perform weighted pooling
pooled_values = []
# Split the sequence evenly
intervals = torch.linspace(0, seq_len, steps=output_size + 1).long()
for i in range(output_size):
start = intervals[i].item()
end = intervals[i + 1].item()
chunk_input = item_input[start:end] # Shape: (chunk_size, hidden_size)
chunk_weights = item_weights[start:end] # Shape: (chunk_size)
if chunk_weights.sum() == 0:
# If the sum of weights is zero, add a zero vector
pooled_value = torch.zeros(hidden_size, device=device, dtype=hidden_states.dtype)
else:
# Calculate weighted average
weighted_input = chunk_input * chunk_weights.unsqueeze(-1) # Shape: (chunk_size, hidden_size)
pooled_value = weighted_input.sum(dim=0) / (chunk_weights.sum() + 1e-8) # Shape: (hidden_size)
pooled_values.append(pooled_value)
# Convert the result to a tensor
pooled_values = torch.stack(pooled_values) # Shape: (output_size, hidden_size)
# Store the result
pooled_output[batch_idx, -output_size:] = pooled_values.squeeze(0)
attention_mask[batch_idx, -output_size:] = True
return pooled_output, attention_mask, dynamic_output_sizes
class CoEncoderContextLanguageConnector(nn.Module):
def __init__(self, config: CoEncoderConfig):
super().__init__()
self.dynamic_pooling = CoEncoderDynamicWeightedAvgPool1d(config)
self.linear_1 = nn.Linear(
config.context_config.hidden_size,
config.text_config.hidden_size,
bias=True
)
self.act = ACT2FN[config.projector_hidden_act]
self.linear_2 = nn.Linear(
config.text_config.hidden_size,
config.text_config.hidden_size,
bias=True
)
def forward(self, context_features):
# context_features: [batch_size, seq_len, hidden_size]
# Apply dynamic adaptive average pooling with attention
pooled_output, attention_mask, dynamic_output_sizes = self.dynamic_pooling(
hidden_states=context_features
)
# pooled_output: [batch_size, max_pooled_len, hidden_size]
hidden_states = self.linear_1(pooled_output)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states, attention_mask
class CoEncoderContextTower(nn.Module):
def __init__(self, config: CoEncoderConfig):
super().__init__()
self.tower = AutoModelForCausalLM.from_config(
config.context_config,
attn_implementation="flash_attention_2" if is_flash_attn_2_available() else "eager"
)
self.select_layer = config.context_feature_layer
def feature_select(self, llm_outputs):
hidden_states = llm_outputs.hidden_states
return hidden_states[self.select_layer]
def forward(
self,
input_ids,
inputs_embeds,
attention_mask
):
outputs = self.tower(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
output_hidden_states=True
)
features = self.feature_select(outputs)
return features
class CoEncoderPreTrainedModel(PreTrainedModel):
config_class = CoEncoderConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = [] # ["CoEncoderContextLanguageConnector", "CoEncoderContextTower"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
def _init_weights(self, module):
std = (
self.config.initializer_range
if hasattr(self.config, "initializer_range")
else self.config.text_config.initializer_range
)
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class CoEncoderForConditionalGeneration(CoEncoderPreTrainedModel):
def __init__(self, config: CoEncoderConfig):
super().__init__(config)
self.context_tower = CoEncoderContextTower(config)
self.connector = CoEncoderContextLanguageConnector(config)
self.language_model = AutoModelForCausalLM.from_config(
config.text_config,
attn_implementation="flash_attention_2" if is_flash_attn_2_available() else "eager"
)
self.vocab_size = config.text_config.vocab_size
self.ignore_index = config.ignore_index if hasattr(config, 'ignore_index') else -100
self.begin_of_context_token_id = config.begin_of_context_token_id
self.end_of_context_token_id = config.end_of_context_token_id
self.context_eos_token_id = config.context_config.eos_token_id
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def get_context_input_embeddings(self):
return self.context_tower.tower.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def set_context_input_embeddings(self, value):
self.context_tower.tower.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def get_context_output_embeddings(self):
return self.context_tower.tower.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_context_output_embeddings(self, new_embeddings):
self.context_tower.tower.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
def set_context_encoder(self, decoder):
self.context_tower.tower.set_decoder(decoder)
def get_decoder(self):
return self.language_model.get_decoder()
def get_context_encoder(self):
return self.context_tower.tower.get_decoder()
def tie_weights(self):
return self.language_model.tie_weights()
def context_tie_weights(self):
return self.context_tower.tower.tie_weights()
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
# update vocab size
self.config.text_config.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds
def _merge_context_features(
self,
context_features = None,
inputs_embeds = None,
attention_mask = None,
context_attention_mask=None,
position_ids=None,
labels=None,
):
if context_features is None:
return inputs_embeds, attention_mask, position_ids, labels
batch_size, seq_length, embed_dim = inputs_embeds.shape
context_seq_len = context_features.size(1)
# Create embeddings for begin and end of context tokens
begin_context_embed = self.get_input_embeddings()(torch.tensor(self.begin_of_context_token_id, device=context_features.device))
end_context_embed = self.get_input_embeddings()(torch.tensor(self.end_of_context_token_id, device=context_features.device))
# Determine the actual lengths of context sequences (excluding padding)
if context_attention_mask is not None:
# context_attention_mask: [batch_size, context_seq_len, 1]
context_attention_mask = context_attention_mask.squeeze(-1) # [batch_size, context_seq_len]
# Sum over sequence length to get actual lengths
context_lengths = context_attention_mask.sum(dim=1).long() # [batch_size]
else:
# If no context_attention_mask is provided, assume full length
context_lengths = torch.full((batch_size,), context_seq_len, device=context_features.device, dtype=torch.long)
context_attention_mask = torch.ones(batch_size, context_seq_len, device=context_features.device, dtype=torch.long)
# Rearrange context features to include padding at the beginning
# Identify the maximum context length (excluding padding)
max_context_length = context_lengths.max().item()
# Calculate the amount of padding needed for each sample
padding_lengths = context_seq_len - context_lengths # [batch_size]
# Create new context_features with padding at the beginning
new_context_features = []
for i in range(batch_size):
padding_len = padding_lengths[i].item()
# Create padding embeddings (zeros)
padding_embed = torch.zeros(padding_len, embed_dim, device=context_features.device, dtype=context_features.dtype)
# Get actual context features (excluding padding)
actual_context = context_features[i, padding_len:context_seq_len]
# Concatenate padding, begin token, actual context, end token
sample_context = torch.cat([
padding_embed,
begin_context_embed.unsqueeze(0),
actual_context,
end_context_embed.unsqueeze(0)
], dim=0) # [context_seq_len + 2, embed_dim]
new_context_features.append(sample_context)
# Stack to create [batch_size, new_context_seq_len, embed_dim]
context_features = torch.stack(new_context_features, dim=0)
new_context_seq_len = context_features.size(1)
# Update context_attention_mask accordingly
new_context_attention_mask = []
for i in range(batch_size):
padding_len = padding_lengths[i].item()
# Create padding mask (zeros)
padding_mask = torch.zeros(padding_len, device=context_features.device, dtype=attention_mask.dtype)
# Begin and end token masks
begin_attention = torch.ones(1, device=context_features.device, dtype=attention_mask.dtype)
end_attention = torch.ones(1, device=context_features.device, dtype=attention_mask.dtype)
# Actual context attention mask (excluding padding)
actual_mask = context_attention_mask[i, padding_len:context_seq_len]
# Concatenate masks
sample_mask = torch.cat([
padding_mask,
begin_attention,
actual_mask,
end_attention
], dim=0) # [context_seq_len + 2]
new_context_attention_mask.append(sample_mask)
# Stack to create [batch_size, new_context_seq_len]
context_attention_mask = torch.stack(new_context_attention_mask, dim=0)
# Concatenate context features with input embeddings
new_inputs_embeds = torch.cat([context_features, inputs_embeds], dim=1) # [batch_size, total_seq_len, embed_dim]
# Concatenate attention masks
new_attention_mask = torch.cat([context_attention_mask, attention_mask], dim=1)
# Create new position_ids
total_seq_len = new_inputs_embeds.size(1)
new_position_ids = torch.arange(total_seq_len, device=inputs_embeds.device).unsqueeze(0).expand(batch_size, -1)
# Update labels if provided
if labels is not None:
# Create ignore labels for context (including padding and special tokens)
context_labels = torch.full((batch_size, new_context_seq_len), self.ignore_index, device=labels.device, dtype=labels.dtype)
new_labels = torch.cat([context_labels, labels], dim=1)
else:
new_labels = None
return new_inputs_embeds, new_attention_mask, new_position_ids, new_labels
@replace_return_docstrings(output_type=CoEncoderCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
context_input_ids: torch.LongTensor = None,
context_inputs_embeds: Optional[torch.FloatTensor] = None,
context_attention_mask: Optional[torch.Tensor] = None,
input_ids: torch.LongTensor = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CoEncoderCausalLMOutputWithPast]:
"""
Perform a forward pass through the CoEncoder model, optionally conditioning on context input.
Args:
context_input_ids (`torch.LongTensor` of shape `(batch_size, context_sequence_length)`, *optional*):
Token IDs of the context input sequence.
context_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, context_sequence_length, hidden_size)`, *optional*):
Pre-computed context embeddings. If provided, will not compute embeddings from context_input_ids.
context_attention_mask (`torch.Tensor` of shape `(batch_size, context_sequence_length)`, *optional*):
Attention mask for context input sequence.
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Token IDs of the input sequence.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids`, you can pass an embedded representation directly.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence token.
past_key_values (`List[torch.FloatTensor]`, *optional*):
Pre-computed hidden-states (key and value tensors) that can be used to speed up sequential decoding.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the language modeling loss.
use_cache (`bool`, *optional*):
If `True`, past key values will be used to speed up decoding.
output_attentions (`bool`, *optional*):
If `True`, return the attention tensors for each layer.
output_hidden_states (`bool`, *optional*):
If `True`, return the hidden states of all layers.
return_dict (`bool`, *optional*):
If `True`, return a `CoEncoderCausalLMOutputWithPast` instead of a plain tuple.
Returns:
`Union[Tuple, CoEncoderCausalLMOutputWithPast]`: A tuple containing various model outputs or a `CoEncoderCausalLMOutputWithPast` instance.
The CoEncoderCausalLMOutputWithPast contains the following fields:
- loss (`torch.FloatTensor`, *optional*): Language modeling loss if labels provided, None otherwise.
- logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, vocab_size)`): Prediction scores.
- past_key_values (`List[torch.FloatTensor]`, *optional*): Pre-computed hidden states for efficient decoding.
- hidden_states (`Tuple[torch.FloatTensor]`, *optional*): Layer hidden states if output_hidden_states=True.
- attentions (`Tuple[torch.FloatTensor]`, *optional*): Layer attention weights if output_attentions=True.
- context_hidden_states (`torch.FloatTensor`, *optional*): Final hidden states from the context tower.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
all_inputs_none = (
input_ids is None and
inputs_embeds is None and
context_input_ids is None and
context_inputs_embeds is None
)
if all_inputs_none:
raise ValueError("You must provide either non-empty input_ids/inputs_embeds or context_input_ids/context_inputs_embeds.")
skip_context = False
if context_input_ids is not None:
if torch.all(context_input_ids == self.context_eos_token_id):
skip_context = True
if not skip_context and (context_input_ids is not None or context_inputs_embeds is not None):
context_features = self.context_tower(
input_ids=context_input_ids,
inputs_embeds=context_inputs_embeds,
attention_mask=context_attention_mask,
)
context_features, context_attention_mask = self.connector(
context_features=context_features
)
else:
context_features = None
context_attention_mask = None
if inputs_embeds is None and input_ids is not None:
inputs_embeds = self.get_input_embeddings()(input_ids)
if inputs_embeds is not None:
inputs_embeds, attention_mask, position_ids, labels = self._merge_context_features(
context_features=context_features,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
context_attention_mask=context_attention_mask,
position_ids=position_ids,
labels=labels,
)
else:
inputs_embeds = context_features
attention_mask = context_attention_mask
outputs = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = outputs[0]
loss = None
if labels is not None:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss_fct = nn.CrossEntropyLoss(ignore_index=self.ignore_index)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CoEncoderCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
context_hidden_states=context_features,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
context_features=None,
**kwargs
):
if past_key_values:
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"context_features": context_features,
}
)
return model_inputs