metadata
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec-xlsr-cv-grain-lg_grn_only_v2
results: []
wav2vec-xlsr-cv-grain-lg_grn_only_v2
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0604
- Wer: 0.0276
- Cer: 0.0085
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 24
- eval_batch_size: 12
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 48
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
6.8998 | 0.9984 | 321 | 2.7793 | 1.0 | 0.8727 |
3.2905 | 2.0 | 643 | 0.8365 | 0.9015 | 0.2478 |
1.26 | 2.9984 | 964 | 0.3066 | 0.4268 | 0.0856 |
0.6344 | 4.0 | 1286 | 0.1856 | 0.2137 | 0.0451 |
0.4164 | 4.9984 | 1607 | 0.1513 | 0.1649 | 0.0364 |
0.3006 | 6.0 | 1929 | 0.1271 | 0.1274 | 0.0285 |
0.2414 | 6.9984 | 2250 | 0.1111 | 0.1083 | 0.0251 |
0.2035 | 8.0 | 2572 | 0.1076 | 0.0992 | 0.0228 |
0.169 | 8.9984 | 2893 | 0.1076 | 0.0931 | 0.0213 |
0.1501 | 10.0 | 3215 | 0.1007 | 0.0920 | 0.0213 |
0.1291 | 10.9984 | 3536 | 0.0892 | 0.0772 | 0.0185 |
0.1122 | 12.0 | 3858 | 0.0917 | 0.0746 | 0.0180 |
0.1053 | 12.9984 | 4179 | 0.0903 | 0.0707 | 0.0173 |
0.0972 | 14.0 | 4501 | 0.0863 | 0.0673 | 0.0164 |
0.0847 | 14.9984 | 4822 | 0.0849 | 0.0616 | 0.0157 |
0.0754 | 16.0 | 5144 | 0.0870 | 0.0657 | 0.0158 |
0.0751 | 16.9984 | 5465 | 0.0830 | 0.0610 | 0.0154 |
0.0722 | 18.0 | 5787 | 0.0922 | 0.0621 | 0.0159 |
0.0665 | 18.9984 | 6108 | 0.0784 | 0.0601 | 0.0153 |
0.0634 | 20.0 | 6430 | 0.0856 | 0.0545 | 0.0146 |
0.0601 | 20.9984 | 6751 | 0.0881 | 0.0584 | 0.0151 |
0.0545 | 22.0 | 7073 | 0.0876 | 0.0558 | 0.0144 |
0.0503 | 22.9984 | 7394 | 0.0815 | 0.0523 | 0.0137 |
0.0511 | 24.0 | 7716 | 0.0842 | 0.0521 | 0.0140 |
0.0477 | 24.9984 | 8037 | 0.0808 | 0.0532 | 0.0151 |
0.0433 | 26.0 | 8359 | 0.0770 | 0.0482 | 0.0125 |
0.0441 | 26.9984 | 8680 | 0.0803 | 0.0510 | 0.0137 |
0.0424 | 28.0 | 9002 | 0.0771 | 0.0460 | 0.0123 |
0.0373 | 28.9984 | 9323 | 0.0727 | 0.0462 | 0.0122 |
0.0376 | 30.0 | 9645 | 0.0768 | 0.0525 | 0.0134 |
0.0325 | 30.9984 | 9966 | 0.0801 | 0.0508 | 0.0134 |
0.0371 | 32.0 | 10288 | 0.0714 | 0.0445 | 0.0118 |
0.0339 | 32.9984 | 10609 | 0.0738 | 0.0458 | 0.0122 |
0.0329 | 34.0 | 10931 | 0.0672 | 0.0388 | 0.0104 |
0.0294 | 34.9984 | 11252 | 0.0750 | 0.0408 | 0.0113 |
0.0322 | 36.0 | 11574 | 0.0768 | 0.0423 | 0.0117 |
0.028 | 36.9984 | 11895 | 0.0735 | 0.0386 | 0.0117 |
0.0279 | 38.0 | 12217 | 0.0756 | 0.0414 | 0.0122 |
0.0259 | 38.9984 | 12538 | 0.0842 | 0.0495 | 0.0135 |
0.0273 | 40.0 | 12860 | 0.0775 | 0.0456 | 0.0131 |
0.026 | 40.9984 | 13181 | 0.0729 | 0.0427 | 0.0119 |
0.0247 | 42.0 | 13503 | 0.0728 | 0.0410 | 0.0115 |
0.0247 | 42.9984 | 13824 | 0.0709 | 0.0430 | 0.0118 |
0.023 | 44.0 | 14146 | 0.0632 | 0.0362 | 0.0101 |
0.0206 | 44.9984 | 14467 | 0.0675 | 0.0347 | 0.0106 |
0.0203 | 46.0 | 14789 | 0.0750 | 0.0419 | 0.0125 |
0.0215 | 46.9984 | 15110 | 0.0644 | 0.0358 | 0.0104 |
0.0172 | 48.0 | 15432 | 0.0693 | 0.0332 | 0.0098 |
0.0191 | 48.9984 | 15753 | 0.0694 | 0.0341 | 0.0102 |
0.0175 | 50.0 | 16075 | 0.0716 | 0.0369 | 0.0108 |
0.018 | 50.9984 | 16396 | 0.0635 | 0.0351 | 0.0101 |
0.0162 | 52.0 | 16718 | 0.0711 | 0.0382 | 0.0106 |
0.0167 | 52.9984 | 17039 | 0.0605 | 0.0343 | 0.0097 |
0.0173 | 54.0 | 17361 | 0.0699 | 0.0321 | 0.0097 |
0.0157 | 54.9984 | 17682 | 0.0726 | 0.0330 | 0.0100 |
0.0128 | 56.0 | 18004 | 0.0693 | 0.0323 | 0.0096 |
0.0169 | 56.9984 | 18325 | 0.0602 | 0.0306 | 0.0092 |
0.014 | 58.0 | 18647 | 0.0638 | 0.0332 | 0.0097 |
0.0133 | 58.9984 | 18968 | 0.0630 | 0.0325 | 0.0097 |
0.0151 | 60.0 | 19290 | 0.0645 | 0.0328 | 0.0098 |
0.0137 | 60.9984 | 19611 | 0.0642 | 0.0351 | 0.0098 |
0.0135 | 62.0 | 19933 | 0.0569 | 0.0284 | 0.0084 |
0.0119 | 62.9984 | 20254 | 0.0595 | 0.0308 | 0.0088 |
0.011 | 64.0 | 20576 | 0.0601 | 0.0263 | 0.0086 |
0.0113 | 64.9984 | 20897 | 0.0639 | 0.0282 | 0.0090 |
0.0125 | 66.0 | 21219 | 0.0588 | 0.0291 | 0.0090 |
0.0103 | 66.9984 | 21540 | 0.0632 | 0.0289 | 0.0090 |
0.0094 | 68.0 | 21862 | 0.0600 | 0.0282 | 0.0087 |
0.0098 | 68.9984 | 22183 | 0.0615 | 0.0278 | 0.0085 |
0.0089 | 70.0 | 22505 | 0.0598 | 0.0278 | 0.0084 |
0.0105 | 70.9984 | 22826 | 0.0611 | 0.0291 | 0.0081 |
0.0083 | 72.0 | 23148 | 0.0623 | 0.0293 | 0.0084 |
0.0092 | 72.9984 | 23469 | 0.0590 | 0.0302 | 0.0090 |
0.0068 | 74.0 | 23791 | 0.0604 | 0.0276 | 0.0085 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.1.0+cu118
- Datasets 3.1.0
- Tokenizers 0.20.1