sureal01's picture
Create README.md
c56660a verified
---
tags:
- javascript
- code-generation
- transformers
- fine-tuned
- distilgpt2
license: mit
library_name: transformers
---
# πŸš€ DistilGPT-2 Code Generator (Explanation β†’ JavaScript Code)
This model is a **fine-tuned version of `distilgpt2`** trained to generate **JavaScript code** from natural language explanations.
It was trained on a dataset containing **explanation-code pairs**, making it useful for:
βœ… **Code generation from text descriptions**
βœ… **Learning JavaScript syntax & patterns**
βœ… **Automated coding assistance**
---
## **πŸ›  Model Details**
- **Base Model:** `distilgpt2` (6x smaller than GPT-2)
- **Dataset:** JavaScript explanations + corresponding functions
- **Fine-tuning:** Trained using **LoRA (memory-efficient adaptation)**
- **Training Environment:** Google Colab (T4 GPU)
- **Optimization:** FP16 precision for faster training
---
## **πŸ“Š Example Usage**
Load the model and generate JavaScript code from explanations:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "sureal01/distilgpt2-code-generator" # Replace with your username
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def generate_code(explanation):
input_text = f"### Explanation:\n{explanation}\n\n### Generate JavaScript code:\n"
inputs = tokenizer(input_text, return_tensors="pt")
output = model.generate(**inputs, max_length=150, temperature=0.5, top_p=0.9, repetition_penalty=1.5)
return tokenizer.decode(output[0], skip_special_tokens=True)
# Example
test_explanation = "This function takes a name as input and returns a greeting message."
generated_code = generate_code(test_explanation)
print("\nπŸ”Ή **Generated Code:**\n", generated_code)