metadata
library_name: transformers
tags: []
Inference
# Load model directly
from transformers import AutoModelForCausalLM, GPT2Tokenizer
tokenizer = GPT2Tokenizer.from_pretrained("suriya7/conversational-gpt-1")
model = AutoModelForCausalLM.from_pretrained("suriya7/conversational-gpt-1")
Chatting
import torch
prompt = """
<|im_start|>system\nYou are a helpful AI assistant named Securitron, trained by Aquilax.<|im_end|>
"""
# Keep a list for the last one conversation exchanges
conversation_history = []
while True:
user_prompt = input("User Question: ")
if user_prompt.lower() == 'break':
break
# Format the user's input
user = f"""<|im_start|>user
{user_prompt}<|im_end|>"""
# Add the user's question to the conversation history
conversation_history.append(user)
# Ensure conversation starts with a user's input and keep only the last 2 exchanges (4 turns)
conversation_history = conversation_history[-5:]
# Build the full prompt
current_prompt = prompt + "\n".join(conversation_history)
# Tokenize the prompt
encodeds = tokenizer(current_prompt, return_tensors="pt", truncation=True).input_ids
# Move model and inputs to the appropriate device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
inputs = encodeds.to(device)
# Create an empty list to store generated tokens
generated_ids = inputs
# Start generating tokens one by one
assistant_response = ""
# print("Assistant: ", end="", flush=True) # Print "Assistant:" once before streaming starts
for _ in range(512): # Specify a max token limit for streaming
# Generate the next token in the sequence
next_token = model.generate(
generated_ids,
max_new_tokens=1,
pad_token_id=50259,
eos_token_id=50259,
num_return_sequences=1,
do_sample=True, # Use sampling for more diverse responses
top_k=50, # Limit to the top-k tokens to sample from
temperature=0.7, # Adjust temperature for randomness
top_p =0.90
)
# Add the generated token to the list
generated_ids = torch.cat([generated_ids, next_token[:, -1:]], dim=1)
# Decode the generated token (flatten it to a list of IDs)
token_id = next_token[0, -1].item() # Extract the last token as an integer
token = tokenizer.decode([token_id], skip_special_tokens=True)
# Append the token to the ongoing response
assistant_response += token
print(token, end="", flush=True) # Stream the token in real time
# If EOS token is encountered, stop generating
if token_id == 50259: # EOS token
break
print() # Print a newline after streaming is complete
# Add the assistant's response to the conversation history
conversation_history.append(f"<|im_start|>{assistant_response.strip()}<|im_end|>")