metadata
license: gemma
library_name: transformers
pipeline_tag: text-generation
extra_gated_button_content: Acknowledge license
tags:
- conversational
- TensorBlock
- GGUF
language:
- ar
- en
base_model: silma-ai/SILMA-9B-Instruct-v1.0
model-index:
- name: SILMA-9B-Instruct-v1.0
results:
- task:
type: text-generation
dataset:
name: MMLU (Arabic)
type: OALL/Arabic_MMLU
metrics:
- type: loglikelihood_acc_norm
value: 52.55
name: acc_norm
source:
url: https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard
name: Open Arabic LLM Leaderboard
- task:
type: text-generation
dataset:
name: AlGhafa
type: OALL/AlGhafa-Arabic-LLM-Benchmark-Native
metrics:
- type: loglikelihood_acc_norm
value: 71.85
name: acc_norm
source:
url: https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard
name: Open Arabic LLM Leaderboard
- task:
type: text-generation
dataset:
name: ARC Challenge (Arabic)
type: OALL/AlGhafa-Arabic-LLM-Benchmark-Translated
metrics:
- type: loglikelihood_acc_norm
value: 78.19
name: acc_norm
- type: loglikelihood_acc_norm
value: 86
name: acc_norm
- type: loglikelihood_acc_norm
value: 64.05
name: acc_norm
- type: loglikelihood_acc_norm
value: 78.89
name: acc_norm
- type: loglikelihood_acc_norm
value: 47.64
name: acc_norm
- type: loglikelihood_acc_norm
value: 72.93
name: acc_norm
- type: loglikelihood_acc_norm
value: 71.96
name: acc_norm
- type: loglikelihood_acc_norm
value: 75.55
name: acc_norm
- type: loglikelihood_acc_norm
value: 91.26
name: acc_norm
- type: loglikelihood_acc_norm
value: 67.59
name: acc_norm
source:
url: https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard
name: Open Arabic LLM Leaderboard
- task:
type: text-generation
dataset:
name: ACVA
type: OALL/ACVA
metrics:
- type: loglikelihood_acc_norm
value: 78.89
name: acc_norm
source:
url: https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard
name: Open Arabic LLM Leaderboard
- task:
type: text-generation
dataset:
name: Arabic_EXAMS
type: OALL/Arabic_EXAMS
metrics:
- type: loglikelihood_acc_norm
value: 51.4
name: acc_norm
source:
url: https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard
name: Open Arabic LLM Leaderboard
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
silma-ai/SILMA-9B-Instruct-v1.0 - GGUF
This repo contains GGUF format model files for silma-ai/SILMA-9B-Instruct-v1.0.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.
Prompt template
<bos>{system_prompt}<start_of_turn>user
{prompt}<end_of_turn>
<start_of_turn>model
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
SILMA-9B-Instruct-v1.0-Q2_K.gguf | Q2_K | 3.544 GB | smallest, significant quality loss - not recommended for most purposes |
SILMA-9B-Instruct-v1.0-Q3_K_S.gguf | Q3_K_S | 4.040 GB | very small, high quality loss |
SILMA-9B-Instruct-v1.0-Q3_K_M.gguf | Q3_K_M | 4.435 GB | very small, high quality loss |
SILMA-9B-Instruct-v1.0-Q3_K_L.gguf | Q3_K_L | 4.780 GB | small, substantial quality loss |
SILMA-9B-Instruct-v1.0-Q4_0.gguf | Q4_0 | 5.069 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
SILMA-9B-Instruct-v1.0-Q4_K_S.gguf | Q4_K_S | 5.103 GB | small, greater quality loss |
SILMA-9B-Instruct-v1.0-Q4_K_M.gguf | Q4_K_M | 5.365 GB | medium, balanced quality - recommended |
SILMA-9B-Instruct-v1.0-Q5_0.gguf | Q5_0 | 6.038 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
SILMA-9B-Instruct-v1.0-Q5_K_S.gguf | Q5_K_S | 6.038 GB | large, low quality loss - recommended |
SILMA-9B-Instruct-v1.0-Q5_K_M.gguf | Q5_K_M | 6.191 GB | large, very low quality loss - recommended |
SILMA-9B-Instruct-v1.0-Q6_K.gguf | Q6_K | 7.068 GB | very large, extremely low quality loss |
SILMA-9B-Instruct-v1.0-Q8_0.gguf | Q8_0 | 9.152 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/SILMA-9B-Instruct-v1.0-GGUF --include "SILMA-9B-Instruct-v1.0-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/SILMA-9B-Instruct-v1.0-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'