morriszms's picture
Upload folder using huggingface_hub
8d5d31b verified
---
license: gemma
library_name: transformers
pipeline_tag: text-generation
extra_gated_button_content: Acknowledge license
tags:
- conversational
- TensorBlock
- GGUF
language:
- ar
- en
base_model: silma-ai/SILMA-9B-Instruct-v1.0
model-index:
- name: SILMA-9B-Instruct-v1.0
results:
- task:
type: text-generation
dataset:
name: MMLU (Arabic)
type: OALL/Arabic_MMLU
metrics:
- type: loglikelihood_acc_norm
value: 52.55
name: acc_norm
source:
url: https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard
name: Open Arabic LLM Leaderboard
- task:
type: text-generation
dataset:
name: AlGhafa
type: OALL/AlGhafa-Arabic-LLM-Benchmark-Native
metrics:
- type: loglikelihood_acc_norm
value: 71.85
name: acc_norm
source:
url: https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard
name: Open Arabic LLM Leaderboard
- task:
type: text-generation
dataset:
name: ARC Challenge (Arabic)
type: OALL/AlGhafa-Arabic-LLM-Benchmark-Translated
metrics:
- type: loglikelihood_acc_norm
value: 78.19
name: acc_norm
- type: loglikelihood_acc_norm
value: 86
name: acc_norm
- type: loglikelihood_acc_norm
value: 64.05
name: acc_norm
- type: loglikelihood_acc_norm
value: 78.89
name: acc_norm
- type: loglikelihood_acc_norm
value: 47.64
name: acc_norm
- type: loglikelihood_acc_norm
value: 72.93
name: acc_norm
- type: loglikelihood_acc_norm
value: 71.96
name: acc_norm
- type: loglikelihood_acc_norm
value: 75.55
name: acc_norm
- type: loglikelihood_acc_norm
value: 91.26
name: acc_norm
- type: loglikelihood_acc_norm
value: 67.59
name: acc_norm
source:
url: https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard
name: Open Arabic LLM Leaderboard
- task:
type: text-generation
dataset:
name: ACVA
type: OALL/ACVA
metrics:
- type: loglikelihood_acc_norm
value: 78.89
name: acc_norm
source:
url: https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard
name: Open Arabic LLM Leaderboard
- task:
type: text-generation
dataset:
name: Arabic_EXAMS
type: OALL/Arabic_EXAMS
metrics:
- type: loglikelihood_acc_norm
value: 51.4
name: acc_norm
source:
url: https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard
name: Open Arabic LLM Leaderboard
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## silma-ai/SILMA-9B-Instruct-v1.0 - GGUF
This repo contains GGUF format model files for [silma-ai/SILMA-9B-Instruct-v1.0](https://huggingface.co/silma-ai/SILMA-9B-Instruct-v1.0).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
<bos>{system_prompt}<start_of_turn>user
{prompt}<end_of_turn>
<start_of_turn>model
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [SILMA-9B-Instruct-v1.0-Q2_K.gguf](https://huggingface.co/tensorblock/SILMA-9B-Instruct-v1.0-GGUF/tree/main/SILMA-9B-Instruct-v1.0-Q2_K.gguf) | Q2_K | 3.544 GB | smallest, significant quality loss - not recommended for most purposes |
| [SILMA-9B-Instruct-v1.0-Q3_K_S.gguf](https://huggingface.co/tensorblock/SILMA-9B-Instruct-v1.0-GGUF/tree/main/SILMA-9B-Instruct-v1.0-Q3_K_S.gguf) | Q3_K_S | 4.040 GB | very small, high quality loss |
| [SILMA-9B-Instruct-v1.0-Q3_K_M.gguf](https://huggingface.co/tensorblock/SILMA-9B-Instruct-v1.0-GGUF/tree/main/SILMA-9B-Instruct-v1.0-Q3_K_M.gguf) | Q3_K_M | 4.435 GB | very small, high quality loss |
| [SILMA-9B-Instruct-v1.0-Q3_K_L.gguf](https://huggingface.co/tensorblock/SILMA-9B-Instruct-v1.0-GGUF/tree/main/SILMA-9B-Instruct-v1.0-Q3_K_L.gguf) | Q3_K_L | 4.780 GB | small, substantial quality loss |
| [SILMA-9B-Instruct-v1.0-Q4_0.gguf](https://huggingface.co/tensorblock/SILMA-9B-Instruct-v1.0-GGUF/tree/main/SILMA-9B-Instruct-v1.0-Q4_0.gguf) | Q4_0 | 5.069 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [SILMA-9B-Instruct-v1.0-Q4_K_S.gguf](https://huggingface.co/tensorblock/SILMA-9B-Instruct-v1.0-GGUF/tree/main/SILMA-9B-Instruct-v1.0-Q4_K_S.gguf) | Q4_K_S | 5.103 GB | small, greater quality loss |
| [SILMA-9B-Instruct-v1.0-Q4_K_M.gguf](https://huggingface.co/tensorblock/SILMA-9B-Instruct-v1.0-GGUF/tree/main/SILMA-9B-Instruct-v1.0-Q4_K_M.gguf) | Q4_K_M | 5.365 GB | medium, balanced quality - recommended |
| [SILMA-9B-Instruct-v1.0-Q5_0.gguf](https://huggingface.co/tensorblock/SILMA-9B-Instruct-v1.0-GGUF/tree/main/SILMA-9B-Instruct-v1.0-Q5_0.gguf) | Q5_0 | 6.038 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [SILMA-9B-Instruct-v1.0-Q5_K_S.gguf](https://huggingface.co/tensorblock/SILMA-9B-Instruct-v1.0-GGUF/tree/main/SILMA-9B-Instruct-v1.0-Q5_K_S.gguf) | Q5_K_S | 6.038 GB | large, low quality loss - recommended |
| [SILMA-9B-Instruct-v1.0-Q5_K_M.gguf](https://huggingface.co/tensorblock/SILMA-9B-Instruct-v1.0-GGUF/tree/main/SILMA-9B-Instruct-v1.0-Q5_K_M.gguf) | Q5_K_M | 6.191 GB | large, very low quality loss - recommended |
| [SILMA-9B-Instruct-v1.0-Q6_K.gguf](https://huggingface.co/tensorblock/SILMA-9B-Instruct-v1.0-GGUF/tree/main/SILMA-9B-Instruct-v1.0-Q6_K.gguf) | Q6_K | 7.068 GB | very large, extremely low quality loss |
| [SILMA-9B-Instruct-v1.0-Q8_0.gguf](https://huggingface.co/tensorblock/SILMA-9B-Instruct-v1.0-GGUF/tree/main/SILMA-9B-Instruct-v1.0-Q8_0.gguf) | Q8_0 | 9.152 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/SILMA-9B-Instruct-v1.0-GGUF --include "SILMA-9B-Instruct-v1.0-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/SILMA-9B-Instruct-v1.0-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```