metadata
language:
- en
- es
- pt
tags:
- falcon3
license: other
license_name: falcon-llm-license
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
Table of Contents
TL;DR
Model Details
⚠️ This is a raw, pretrained model, which should be further finetuned for most usecases.
Model Description
- Developed by: https://www.tii.ae
- Model type: Causal decoder-only
- Architecture: Transformer-base
- Language(s) (NLP): Mainly English
- License: TII Falcon-LLM License 2.0
Usage
Find below some example scripts on how to use the model in transformers
(Make sure to have the latest transformers, or the one built from source):
Using the Pytorch model with 🤗 transformers
Running the model on a CPU
Click to expand
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base")
input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
Running the model on a GPU
Click to expand
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", device_map="auto")
input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
Running the model on a GPU using torch.compile
Click to expand
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("tiiuae/Falcon3-7B-Base")
model = AutoModelForCausalLM.from_pretrained("tiiuae/Falcon3-7B-Base", torch_dtype=torch.bfloat16).to(0)
model = torch.compile(model)
input_text = "Question: How many hours in one day? Answer: "
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
Training Details
Training Data
Falcon3-7B is trained on 15 Gigatokens of datasets comprising of web, code, STEM, high quality and mutlilingual data.
Training Procedure
Falcon3-7B is trained on 256 H100 nodes (world size 2048).
Training Hyperparameters
Hyperparameter | Value | Comment |
---|---|---|
Precision | bfloat16 |
|
Optimizer | AdamW | |
Max learning rate | 6e-4 | Following a WSD (warmup-stable-decay) |
learning rate scheduler | ||
Weight decay | 1e-1 | |
z-loss | 1e-4 | |
Batch size | Variable | Batch size was gradually increased |
during the training |
Evaluation
Category | Benchmark | Llama-3.2-1B | Qwen2.5-1.5B | SmolLM2-1.7B | gemma-2-2b | Falcon3-1B-Base |
---|---|---|---|---|---|---|
General | MMLU (5-shot) | 31.1 | 61.0 | 50.1 | 53.0 | 42.5 |
MMLU-PRO (5-shot) | 11.7 | 28.4 | 21.3 | 22.1 | 16.1 | |
IFEval | 14.8 | 26.0 | 24.2 | 20.3 | 25.2 | |
Math | GSM8K (5-shot) | 6.6 | 62.2 | 31.0 | 25.5 | 34.3 |
MATH Lvl-5 (4-shot) | 0.2 | 6.7 | 1.4 | 2.6 | 2.2 | |
Reasoning | Arc Challenge (25-shot) | 40.2 | 54.8 | 54.1 | 53.7 | 48.1 |
GPQA (0-shot) | 24.2 | 28.1 | 28.9 | 25.5 | 28.1 | |
MUSR (0-shot) | 34.5 | 35.5 | 34.7 | 42.7 | 41.9 | |
BBH (3-shot) | 31.2 | 41.1 | 34.2 | 36.8 | 36.0 | |
CommonSense Understanding | PIQA (0-shot) | 74.5 | 76.0 | 77.5 | 79.2 | 74.5 |
SciQ (0-shot) | 88.5 | 93.1 | 90.8 | 95.7 | 91.1 | |
Winogrande (0-shot) | 60.4 | 63.0 | 66.1 | 68.6 | 61.2 | |
OpenbookQA (0-shot) | 37.4 | 40.4 | 44.0 | 41.8 | 41.0 |