metadata
tags:
- image-classification
- timm
library_tag: timm
license: apache-2.0
datasets:
- imagenet-1k
Model card for gernet_m.idstcv_in1k
A GENet (GPU-Efficient-Networks) image classification model. Trained on ImageNet-1k by paper authors.
This model architecture is implemented using timm
's flexible BYOBNet (Bring-Your-Own-Blocks Network).
BYOBNet allows configuration of:
- block / stage layout
- stem layout
- output stride (dilation)
- activation and norm layers
- channel and spatial / self-attention layers
...and also includes timm
features common to many other architectures, including:
- stochastic depth
- gradient checkpointing
- layer-wise LR decay
- per-stage feature extraction
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 21.1
- GMACs: 3.0
- Activations (M): 5.2
- Image size: 224 x 224
- Papers:
- Neural Architecture Design for GPU-Efficient Networks: https://arxiv.org/abs/2006.14090
- Dataset: ImageNet-1k
- Original: https://github.com/idstcv/GPU-Efficient-Networks
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('gernet_m.idstcv_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'gernet_m.idstcv_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 32, 112, 112])
# torch.Size([1, 128, 56, 56])
# torch.Size([1, 192, 28, 28])
# torch.Size([1, 640, 14, 14])
# torch.Size([1, 2560, 7, 7])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'gernet_m.idstcv_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 2560, 7, 7) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Model Comparison
Explore the dataset and runtime metrics of this model in timm model results.
Citation
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@misc{lin2020neural,
title={Neural Architecture Design for GPU-Efficient Networks},
author={Ming Lin and Hesen Chen and Xiuyu Sun and Qi Qian and Hao Li and Rong Jin},
year={2020},
eprint={2006.14090},
archivePrefix={arXiv},
primaryClass={cs.CV}
}