|
--- |
|
tags: |
|
- image-classification |
|
- timm |
|
library_name: timm |
|
license: apache-2.0 |
|
datasets: |
|
- imagenet-1k |
|
--- |
|
# Model card for mobilenetv4_hybrid_medium.e500_r224_in1k |
|
|
|
A MobileNet-V4 image classification model. Trained on ImageNet-1k by Ross Wightman. |
|
|
|
Trained with `timm` scripts using hyper-parameters (mostly) similar to those in the paper. |
|
|
|
NOTE: So far, these are the only known MNV4 weights. Official weights for Tensorflow models are unreleased. |
|
|
|
|
|
## Model Details |
|
- **Model Type:** Image classification / feature backbone |
|
- **Model Stats:** |
|
- Params (M): 11.1 |
|
- GMACs: 1.0 |
|
- Activations (M): 6.4 |
|
- Image size: train = 224 x 224, test = 256 x 256 |
|
- **Dataset:** ImageNet-1k |
|
- **Papers:** |
|
- MobileNetV4 -- Universal Models for the Mobile Ecosystem: https://arxiv.org/abs/2404.10518 |
|
- **Original:** https://github.com/tensorflow/models/tree/master/official/vision |
|
|
|
## Model Usage |
|
### Image Classification |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model('mobilenetv4_hybrid_medium.e500_r224_in1k', pretrained=True) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) |
|
``` |
|
|
|
### Feature Map Extraction |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model( |
|
'mobilenetv4_hybrid_medium.e500_r224_in1k', |
|
pretrained=True, |
|
features_only=True, |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
for o in output: |
|
# print shape of each feature map in output |
|
# e.g.: |
|
# torch.Size([1, 32, 112, 112]) |
|
# torch.Size([1, 48, 56, 56]) |
|
# torch.Size([1, 80, 28, 28]) |
|
# torch.Size([1, 160, 14, 14]) |
|
# torch.Size([1, 960, 7, 7]) |
|
|
|
print(o.shape) |
|
``` |
|
|
|
### Image Embeddings |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model( |
|
'mobilenetv4_hybrid_medium.e500_r224_in1k', |
|
pretrained=True, |
|
num_classes=0, # remove classifier nn.Linear |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor |
|
|
|
# or equivalently (without needing to set num_classes=0) |
|
|
|
output = model.forward_features(transforms(img).unsqueeze(0)) |
|
# output is unpooled, a (1, 960, 7, 7) shaped tensor |
|
|
|
output = model.forward_head(output, pre_logits=True) |
|
# output is a (1, num_features) shaped tensor |
|
``` |
|
|
|
## Model Comparison |
|
### By Top-1 |
|
|
|
|model |top1 |top1_err|top5 |top5_err|param_count|img_size| |
|
|-------------------------------------------|------|--------|------|--------|-----------|--------| |
|
|mobilenetv4_conv_large.e500_r256_in1k |82.674|17.326 |96.31 |3.69 |32.59 |320 | |
|
|mobilenetv4_conv_large.e500_r256_in1k |81.862|18.138 |95.69 |4.31 |32.59 |256 | |
|
|mobilenetv4_hybrid_medium.e500_r224_in1k |81.276|18.724 |95.742|4.258 |11.07 |256 | |
|
|mobilenetv4_conv_medium.e500_r256_in1k |80.858|19.142 |95.768|4.232 |9.72 |320 | |
|
|mobilenetv4_hybrid_medium.e500_r224_in1k |80.442|19.558 |95.38 |4.62 |11.07 |224 | |
|
|mobilenetv4_conv_blur_medium.e500_r224_in1k|80.142|19.858 |95.298|4.702 |9.72 |256 | |
|
|mobilenetv4_conv_medium.e500_r256_in1k |79.928|20.072 |95.184|4.816 |9.72 |256 | |
|
|mobilenetv4_conv_medium.e500_r224_in1k |79.808|20.192 |95.186|4.814 |9.72 |256 | |
|
|mobilenetv4_conv_blur_medium.e500_r224_in1k|79.438|20.562 |94.932|5.068 |9.72 |224 | |
|
|mobilenetv4_conv_medium.e500_r224_in1k |79.094|20.906 |94.77 |5.23 |9.72 |224 | |
|
|mobilenetv4_conv_small.e1200_r224_in1k |74.292|25.708 |92.116|7.884 |3.77 |256 | |
|
|mobilenetv4_conv_small.e1200_r224_in1k |73.454|26.546 |91.34 |8.66 |3.77 |224 | |
|
|