timm
/

Image Classification
timm
PyTorch
Safetensors
rwightman's picture
rwightman HF staff
Add model
cfc3b2e verified
|
raw
history blame
4.95 kB
---
tags:
- image-classification
- timm
library_name: timm
license: apache-2.0
datasets:
- imagenet-1k
---
# Model card for mobilenetv4_hybrid_medium.e500_r224_in1k
A MobileNet-V4 image classification model. Trained on ImageNet-1k by Ross Wightman.
Trained with `timm` scripts using hyper-parameters (mostly) similar to those in the paper.
NOTE: So far, these are the only known MNV4 weights. Official weights for Tensorflow models are unreleased.
## Model Details
- **Model Type:** Image classification / feature backbone
- **Model Stats:**
- Params (M): 11.1
- GMACs: 1.0
- Activations (M): 6.4
- Image size: train = 224 x 224, test = 256 x 256
- **Dataset:** ImageNet-1k
- **Papers:**
- MobileNetV4 -- Universal Models for the Mobile Ecosystem: https://arxiv.org/abs/2404.10518
- **Original:** https://github.com/tensorflow/models/tree/master/official/vision
## Model Usage
### Image Classification
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('mobilenetv4_hybrid_medium.e500_r224_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
```
### Feature Map Extraction
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'mobilenetv4_hybrid_medium.e500_r224_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 32, 112, 112])
# torch.Size([1, 48, 56, 56])
# torch.Size([1, 80, 28, 28])
# torch.Size([1, 160, 14, 14])
# torch.Size([1, 960, 7, 7])
print(o.shape)
```
### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'mobilenetv4_hybrid_medium.e500_r224_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 960, 7, 7) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
```
## Model Comparison
### By Top-1
|model |top1 |top1_err|top5 |top5_err|param_count|img_size|
|-------------------------------------------|------|--------|------|--------|-----------|--------|
|mobilenetv4_conv_large.e500_r256_in1k |82.674|17.326 |96.31 |3.69 |32.59 |320 |
|mobilenetv4_conv_large.e500_r256_in1k |81.862|18.138 |95.69 |4.31 |32.59 |256 |
|mobilenetv4_hybrid_medium.e500_r224_in1k |81.276|18.724 |95.742|4.258 |11.07 |256 |
|mobilenetv4_conv_medium.e500_r256_in1k |80.858|19.142 |95.768|4.232 |9.72 |320 |
|mobilenetv4_hybrid_medium.e500_r224_in1k |80.442|19.558 |95.38 |4.62 |11.07 |224 |
|mobilenetv4_conv_blur_medium.e500_r224_in1k|80.142|19.858 |95.298|4.702 |9.72 |256 |
|mobilenetv4_conv_medium.e500_r256_in1k |79.928|20.072 |95.184|4.816 |9.72 |256 |
|mobilenetv4_conv_medium.e500_r224_in1k |79.808|20.192 |95.186|4.814 |9.72 |256 |
|mobilenetv4_conv_blur_medium.e500_r224_in1k|79.438|20.562 |94.932|5.068 |9.72 |224 |
|mobilenetv4_conv_medium.e500_r224_in1k |79.094|20.906 |94.77 |5.23 |9.72 |224 |
|mobilenetv4_conv_small.e1200_r224_in1k |74.292|25.708 |92.116|7.884 |3.77 |256 |
|mobilenetv4_conv_small.e1200_r224_in1k |73.454|26.546 |91.34 |8.66 |3.77 |224 |