metadata
tags:
- image-classification
- timm
library_tag: timm
license: apache-2.0
datasets:
- imagenet-1k
- imagenet-12k
Model card for rexnetr_200.sw_in12k_ft_in1k
A ReXNet-R image classification model. The R variant of the architecture is timm
specific and rounds channels (modulus 8 or 16) to prevent performance issues w/ NVIDIA Tensor Cores. Pretrained on ImageNet-12k and fine-tuned on ImageNet-1k by Ross Wightman in timm
.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 16.5
- GMACs: 1.6
- Activations (M): 15.1
- Image size: train = 224 x 224, test = 288 x 288
- Papers:
- Rethinking Channel Dimensions for Efficient Model Design: https://arxiv.org/abs/2007.00992
- Original: https://github.com/huggingface/pytorch-image-models
- Dataset: ImageNet-1k
- Pretrain Dataset: ImageNet-12k
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('rexnetr_200.sw_in12k_ft_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'rexnetr_200.sw_in12k_ft_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 32, 112, 112])
# torch.Size([1, 80, 56, 56])
# torch.Size([1, 120, 28, 28])
# torch.Size([1, 256, 14, 14])
# torch.Size([1, 368, 7, 7])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'rexnetr_200.sw_in12k_ft_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 2560, 7, 7) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Model Comparison
Explore the dataset and runtime metrics of this model in timm model results."
model | top1 | top5 | param_count | img_size | crop_pct |
---|---|---|---|---|---|
rexnetr_300.sw_in12k_ft_in1k | 84.53 | 97.252 | 34.81 | 288 | 1.0 |
rexnetr_200.sw_in12k_ft_in1k | 83.164 | 96.648 | 16.52 | 288 | 1.0 |
rexnet_300.nav_in1k | 82.772 | 96.232 | 34.71 | 224 | 0.875 |
rexnet_200.nav_in1k | 81.652 | 95.668 | 16.37 | 224 | 0.875 |
rexnet_150.nav_in1k | 80.308 | 95.174 | 9.73 | 224 | 0.875 |
rexnet_130.nav_in1k | 79.478 | 94.68 | 7.56 | 224 | 0.875 |
rexnet_100.nav_in1k | 77.832 | 93.886 | 4.8 | 224 | 0.875 |
Citation
@misc{han2021rethinking,
title={Rethinking Channel Dimensions for Efficient Model Design},
author={Dongyoon Han and Sangdoo Yun and Byeongho Heo and YoungJoon Yoo},
year={2021},
eprint={2007.00992},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}