|
--- |
|
license: apache-2.0 |
|
library_name: timm |
|
tags: |
|
- image-classification |
|
- timm |
|
datasets: |
|
- imagenet-1k |
|
- imagenet-12k |
|
--- |
|
# Model card for rexnetr_200.sw_in12k_ft_in1k |
|
|
|
A ReXNet-R image classification model. The R variant of the architecture is `timm` specific and rounds channels (modulus 8 or 16) to prevent performance issues w/ NVIDIA Tensor Cores. Pretrained on ImageNet-12k and fine-tuned on ImageNet-1k by Ross Wightman in `timm`. |
|
|
|
|
|
## Model Details |
|
- **Model Type:** Image classification / feature backbone |
|
- **Model Stats:** |
|
- Params (M): 16.5 |
|
- GMACs: 1.6 |
|
- Activations (M): 15.1 |
|
- Image size: train = 224 x 224, test = 288 x 288 |
|
- **Papers:** |
|
- Rethinking Channel Dimensions for Efficient Model Design: https://arxiv.org/abs/2007.00992 |
|
- **Original:** https://github.com/huggingface/pytorch-image-models |
|
- **Dataset:** ImageNet-1k |
|
- **Pretrain Dataset:** ImageNet-12k |
|
|
|
## Model Usage |
|
### Image Classification |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model('rexnetr_200.sw_in12k_ft_in1k', pretrained=True) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) |
|
``` |
|
|
|
### Feature Map Extraction |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model( |
|
'rexnetr_200.sw_in12k_ft_in1k', |
|
pretrained=True, |
|
features_only=True, |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 |
|
|
|
for o in output: |
|
# print shape of each feature map in output |
|
# e.g.: |
|
# torch.Size([1, 32, 112, 112]) |
|
# torch.Size([1, 80, 56, 56]) |
|
# torch.Size([1, 120, 28, 28]) |
|
# torch.Size([1, 256, 14, 14]) |
|
# torch.Size([1, 368, 7, 7]) |
|
|
|
print(o.shape) |
|
``` |
|
|
|
### Image Embeddings |
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
img = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
|
|
model = timm.create_model( |
|
'rexnetr_200.sw_in12k_ft_in1k', |
|
pretrained=True, |
|
num_classes=0, # remove classifier nn.Linear |
|
) |
|
model = model.eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor |
|
|
|
# or equivalently (without needing to set num_classes=0) |
|
|
|
output = model.forward_features(transforms(img).unsqueeze(0)) |
|
# output is unpooled, a (1, 2560, 7, 7) shaped tensor |
|
|
|
output = model.forward_head(output, pre_logits=True) |
|
# output is a (1, num_features) shaped tensor |
|
``` |
|
|
|
## Model Comparison |
|
Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results)." |
|
|
|
|model |top1 |top5 |param_count|img_size|crop_pct| |
|
|-------------------------|------|------|-----------|--------|--------| |
|
|rexnetr_300.sw_in12k_ft_in1k|84.53 |97.252|34.81 |288 |1.0 | |
|
|rexnetr_200.sw_in12k_ft_in1k|83.164|96.648|16.52 |288 |1.0 | |
|
|rexnet_300.nav_in1k |82.772|96.232|34.71 |224 |0.875 | |
|
|rexnet_200.nav_in1k |81.652|95.668|16.37 |224 |0.875 | |
|
|rexnet_150.nav_in1k |80.308|95.174|9.73 |224 |0.875 | |
|
|rexnet_130.nav_in1k |79.478|94.68 |7.56 |224 |0.875 | |
|
|rexnet_100.nav_in1k |77.832|93.886|4.8 |224 |0.875 | |
|
|
|
## Citation |
|
```bibtex |
|
@misc{han2021rethinking, |
|
title={Rethinking Channel Dimensions for Efficient Model Design}, |
|
author={Dongyoon Han and Sangdoo Yun and Byeongho Heo and YoungJoon Yoo}, |
|
year={2021}, |
|
eprint={2007.00992}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
``` |
|
```bibtex |
|
@misc{rw2019timm, |
|
author = {Ross Wightman}, |
|
title = {PyTorch Image Models}, |
|
year = {2019}, |
|
publisher = {GitHub}, |
|
journal = {GitHub repository}, |
|
doi = {10.5281/zenodo.4414861}, |
|
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} |
|
} |
|
``` |
|
|