tmnam20's picture
Upload README.md with huggingface_hub
db96447 verified
metadata
language:
  - en
license: mit
base_model: xlm-roberta-base
tags:
  - generated_from_trainer
datasets:
  - tmnam20/VieGLUE
metrics:
  - accuracy
model-index:
  - name: xlm-roberta-base-sst2-10
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: tmnam20/VieGLUE/SST2
          type: tmnam20/VieGLUE
          config: sst2
          split: validation
          args: sst2
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8830275229357798

xlm-roberta-base-sst2-10

This model is a fine-tuned version of xlm-roberta-base on the tmnam20/VieGLUE/SST2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3909
  • Accuracy: 0.8830

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 10
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3971 0.24 500 0.3420 0.8544
0.3266 0.48 1000 0.3271 0.8555
0.2831 0.71 1500 0.3069 0.8761
0.2752 0.95 2000 0.3220 0.8807
0.2286 1.19 2500 0.3367 0.8911
0.2294 1.43 3000 0.3194 0.8761
0.2055 1.66 3500 0.3312 0.8853
0.1902 1.9 4000 0.3307 0.8842
0.1645 2.14 4500 0.3608 0.8956
0.153 2.38 5000 0.3796 0.8888
0.1868 2.61 5500 0.3763 0.8842
0.1477 2.85 6000 0.3959 0.8830

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.2.0.dev20231203+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0