tmnam20's picture
Upload README.md with huggingface_hub
db96447 verified
---
language:
- en
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
datasets:
- tmnam20/VieGLUE
metrics:
- accuracy
model-index:
- name: xlm-roberta-base-sst2-10
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tmnam20/VieGLUE/SST2
type: tmnam20/VieGLUE
config: sst2
split: validation
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.8830275229357798
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-sst2-10
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the tmnam20/VieGLUE/SST2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3909
- Accuracy: 0.8830
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 10
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3971 | 0.24 | 500 | 0.3420 | 0.8544 |
| 0.3266 | 0.48 | 1000 | 0.3271 | 0.8555 |
| 0.2831 | 0.71 | 1500 | 0.3069 | 0.8761 |
| 0.2752 | 0.95 | 2000 | 0.3220 | 0.8807 |
| 0.2286 | 1.19 | 2500 | 0.3367 | 0.8911 |
| 0.2294 | 1.43 | 3000 | 0.3194 | 0.8761 |
| 0.2055 | 1.66 | 3500 | 0.3312 | 0.8853 |
| 0.1902 | 1.9 | 4000 | 0.3307 | 0.8842 |
| 0.1645 | 2.14 | 4500 | 0.3608 | 0.8956 |
| 0.153 | 2.38 | 5000 | 0.3796 | 0.8888 |
| 0.1868 | 2.61 | 5500 | 0.3763 | 0.8842 |
| 0.1477 | 2.85 | 6000 | 0.3959 | 0.8830 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.2.0.dev20231203+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0