metadata
language:
- en
- multilingual
- ar
- bg
- ca
- cs
- da
- de
- el
- es
- et
- fa
- fi
- fr
- gl
- gu
- he
- hi
- hr
- hu
- hy
- id
- it
- ja
- ka
- ko
- ku
- lt
- lv
- mk
- mn
- mr
- ms
- my
- nb
- nl
- pl
- pt
- ro
- ru
- sk
- sl
- sq
- sr
- sv
- th
- tr
- uk
- ur
- vi
- zh
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:MSELoss
base_model: FacebookAI/xlm-roberta-base
metrics:
- negative_mse
- src2trg_accuracy
- trg2src_accuracy
- mean_accuracy
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Grazie tante.
sentences:
- Grazie infinite.
- Non c'è un solo architetto diplomato in tutta la Contea.
- Le aziende non credevano che fosse loro responsabilità.
- source_sentence: Avance rapide.
sentences:
- Très bien.
- Donc, je voulais faire quelque chose de spécial aujourd'hui.
- >-
Et ils ne tiennent pas non plus compte des civils qui souffrent de façon
plus générale.
- source_sentence: E' importante.
sentences:
- E' una materia fondamentale.
- Sono qui oggi per mostrare le mie fotografie dei Lakota.
- Non ero seguito da un corteo di macchine.
- source_sentence: Müfettişler…
sentences:
- İşçi sınıfına dair birşey.
- Antlaşmaya göre, o topraklar bağımsız bir ulustur.
- Son derece düz ve bataklık bir coğrafya.
- source_sentence: Wir sind eins.
sentences:
- Das versuchen wir zu bieten.
- Ihre Gehirne sind ungefähr 100 Millionen Mal komplizierter.
- Hinter mir war gar keine Autokolonne.
pipeline_tag: sentence-similarity
co2_eq_emissions:
emissions: 23.27766676567869
energy_consumed: 0.05988563672345058
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.179
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on FacebookAI/xlm-roberta-base
results:
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: en ar
type: en-ar
metrics:
- type: negative_mse
value: -20.395545661449432
name: Negative Mse
- task:
type: translation
name: Translation
dataset:
name: en ar
type: en-ar
metrics:
- type: src2trg_accuracy
value: 0.7603222557905337
name: Src2Trg Accuracy
- type: trg2src_accuracy
value: 0.7824773413897281
name: Trg2Src Accuracy
- type: mean_accuracy
value: 0.7713997985901309
name: Mean Accuracy
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts17 en ar test
type: sts17-en-ar-test
metrics:
- type: pearson_cosine
value: 0.40984231242712876
name: Pearson Cosine
- type: spearman_cosine
value: 0.4425400227662121
name: Spearman Cosine
- type: pearson_manhattan
value: 0.4068582195810505
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.4194184278683204
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.38014538983821944
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.38651157412220366
name: Spearman Euclidean
- type: pearson_dot
value: 0.4077636003696869
name: Pearson Dot
- type: spearman_dot
value: 0.37682818098716137
name: Spearman Dot
- type: pearson_max
value: 0.40984231242712876
name: Pearson Max
- type: spearman_max
value: 0.4425400227662121
name: Spearman Max
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: en fr
type: en-fr
metrics:
- type: negative_mse
value: -19.62321847677231
name: Negative Mse
- task:
type: translation
name: Translation
dataset:
name: en fr
type: en-fr
metrics:
- type: src2trg_accuracy
value: 0.8981854838709677
name: Src2Trg Accuracy
- type: trg2src_accuracy
value: 0.8901209677419355
name: Trg2Src Accuracy
- type: mean_accuracy
value: 0.8941532258064516
name: Mean Accuracy
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts17 fr en test
type: sts17-fr-en-test
metrics:
- type: pearson_cosine
value: 0.5017606394120642
name: Pearson Cosine
- type: spearman_cosine
value: 0.5333594401322842
name: Spearman Cosine
- type: pearson_manhattan
value: 0.4461108010622129
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.45470883061015244
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.44313058261278737
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.44806261424208443
name: Spearman Euclidean
- type: pearson_dot
value: 0.40165874540768454
name: Pearson Dot
- type: spearman_dot
value: 0.41339619568003433
name: Spearman Dot
- type: pearson_max
value: 0.5017606394120642
name: Pearson Max
- type: spearman_max
value: 0.5333594401322842
name: Spearman Max
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: en de
type: en-de
metrics:
- type: negative_mse
value: -19.727922976017
name: Negative Mse
- task:
type: translation
name: Translation
dataset:
name: en de
type: en-de
metrics:
- type: src2trg_accuracy
value: 0.8920282542885973
name: Src2Trg Accuracy
- type: trg2src_accuracy
value: 0.8910191725529768
name: Trg2Src Accuracy
- type: mean_accuracy
value: 0.8915237134207871
name: Mean Accuracy
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts17 en de test
type: sts17-en-de-test
metrics:
- type: pearson_cosine
value: 0.5262798164154752
name: Pearson Cosine
- type: spearman_cosine
value: 0.5618005565496922
name: Spearman Cosine
- type: pearson_manhattan
value: 0.5084907192868734
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.5218456102379673
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.5055278909013912
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.5206420646365548
name: Spearman Euclidean
- type: pearson_dot
value: 0.3742195121194434
name: Pearson Dot
- type: spearman_dot
value: 0.3691237073066472
name: Spearman Dot
- type: pearson_max
value: 0.5262798164154752
name: Pearson Max
- type: spearman_max
value: 0.5618005565496922
name: Spearman Max
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: en es
type: en-es
metrics:
- type: negative_mse
value: -19.472387433052063
name: Negative Mse
- task:
type: translation
name: Translation
dataset:
name: en es
type: en-es
metrics:
- type: src2trg_accuracy
value: 0.9434343434343434
name: Src2Trg Accuracy
- type: trg2src_accuracy
value: 0.9464646464646465
name: Trg2Src Accuracy
- type: mean_accuracy
value: 0.944949494949495
name: Mean Accuracy
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts17 es en test
type: sts17-es-en-test
metrics:
- type: pearson_cosine
value: 0.4944989376773328
name: Pearson Cosine
- type: spearman_cosine
value: 0.502096516024397
name: Spearman Cosine
- type: pearson_manhattan
value: 0.44447965250345656
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.428444032581959
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.43569887867301704
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.4169602915053127
name: Spearman Euclidean
- type: pearson_dot
value: 0.3751122541083453
name: Pearson Dot
- type: spearman_dot
value: 0.37961391381473436
name: Spearman Dot
- type: pearson_max
value: 0.4944989376773328
name: Pearson Max
- type: spearman_max
value: 0.502096516024397
name: Spearman Max
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: en tr
type: en-tr
metrics:
- type: negative_mse
value: -20.754697918891907
name: Negative Mse
- task:
type: translation
name: Translation
dataset:
name: en tr
type: en-tr
metrics:
- type: src2trg_accuracy
value: 0.743202416918429
name: Src2Trg Accuracy
- type: trg2src_accuracy
value: 0.743202416918429
name: Trg2Src Accuracy
- type: mean_accuracy
value: 0.743202416918429
name: Mean Accuracy
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts17 en tr test
type: sts17-en-tr-test
metrics:
- type: pearson_cosine
value: 0.5544917743538167
name: Pearson Cosine
- type: spearman_cosine
value: 0.581923120433332
name: Spearman Cosine
- type: pearson_manhattan
value: 0.5103770986779784
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.5087986920849596
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.5045523005860614
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.5053157708914061
name: Spearman Euclidean
- type: pearson_dot
value: 0.47262046401401747
name: Pearson Dot
- type: spearman_dot
value: 0.4297595645819756
name: Spearman Dot
- type: pearson_max
value: 0.5544917743538167
name: Pearson Max
- type: spearman_max
value: 0.581923120433332
name: Spearman Max
- task:
type: knowledge-distillation
name: Knowledge Distillation
dataset:
name: en it
type: en-it
metrics:
- type: negative_mse
value: -19.76993829011917
name: Negative Mse
- task:
type: translation
name: Translation
dataset:
name: en it
type: en-it
metrics:
- type: src2trg_accuracy
value: 0.878147029204431
name: Src2Trg Accuracy
- type: trg2src_accuracy
value: 0.8831822759315207
name: Trg2Src Accuracy
- type: mean_accuracy
value: 0.8806646525679758
name: Mean Accuracy
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts17 it en test
type: sts17-it-en-test
metrics:
- type: pearson_cosine
value: 0.506365733914274
name: Pearson Cosine
- type: spearman_cosine
value: 0.5250284136808592
name: Spearman Cosine
- type: pearson_manhattan
value: 0.45167598168533407
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.46227952068355316
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.4423426674780287
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.45072801992723094
name: Spearman Euclidean
- type: pearson_dot
value: 0.4201989776020174
name: Pearson Dot
- type: spearman_dot
value: 0.42253906764732746
name: Spearman Dot
- type: pearson_max
value: 0.506365733914274
name: Pearson Max
- type: spearman_max
value: 0.5250284136808592
name: Spearman Max
SentenceTransformer based on FacebookAI/xlm-roberta-base
This is a sentence-transformers model finetuned from FacebookAI/xlm-roberta-base on the en-ar, en-fr, en-de, en-es, en-tr and en-it datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: FacebookAI/xlm-roberta-base
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Datasets:
- Languages: en, multilingual, ar, bg, ca, cs, da, de, el, es, et, fa, fi, fr, gl, gu, he, hi, hr, hu, hy, id, it, ja, ka, ko, ku, lt, lv, mk, mn, mr, ms, my, nb, nl, pl, pt, ro, ru, sk, sl, sq, sr, sv, th, tr, uk, ur, vi, zh
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("tomaarsen/xlm-roberta-base-multilingual-en-ar-fr-de-es-tr-it")
sentences = [
'Wir sind eins.',
'Das versuchen wir zu bieten.',
'Ihre Gehirne sind ungefähr 100 Millionen Mal komplizierter.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings)
print(similarities.shape)
Evaluation
Metrics
Knowledge Distillation
Metric |
Value |
negative_mse |
-20.3955 |
Translation
Metric |
Value |
src2trg_accuracy |
0.7603 |
trg2src_accuracy |
0.7825 |
mean_accuracy |
0.7714 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.4098 |
spearman_cosine |
0.4425 |
pearson_manhattan |
0.4069 |
spearman_manhattan |
0.4194 |
pearson_euclidean |
0.3801 |
spearman_euclidean |
0.3865 |
pearson_dot |
0.4078 |
spearman_dot |
0.3768 |
pearson_max |
0.4098 |
spearman_max |
0.4425 |
Knowledge Distillation
Metric |
Value |
negative_mse |
-19.6232 |
Translation
Metric |
Value |
src2trg_accuracy |
0.8982 |
trg2src_accuracy |
0.8901 |
mean_accuracy |
0.8942 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.5018 |
spearman_cosine |
0.5334 |
pearson_manhattan |
0.4461 |
spearman_manhattan |
0.4547 |
pearson_euclidean |
0.4431 |
spearman_euclidean |
0.4481 |
pearson_dot |
0.4017 |
spearman_dot |
0.4134 |
pearson_max |
0.5018 |
spearman_max |
0.5334 |
Knowledge Distillation
Metric |
Value |
negative_mse |
-19.7279 |
Translation
Metric |
Value |
src2trg_accuracy |
0.892 |
trg2src_accuracy |
0.891 |
mean_accuracy |
0.8915 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.5263 |
spearman_cosine |
0.5618 |
pearson_manhattan |
0.5085 |
spearman_manhattan |
0.5218 |
pearson_euclidean |
0.5055 |
spearman_euclidean |
0.5206 |
pearson_dot |
0.3742 |
spearman_dot |
0.3691 |
pearson_max |
0.5263 |
spearman_max |
0.5618 |
Knowledge Distillation
Metric |
Value |
negative_mse |
-19.4724 |
Translation
Metric |
Value |
src2trg_accuracy |
0.9434 |
trg2src_accuracy |
0.9465 |
mean_accuracy |
0.9449 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.4945 |
spearman_cosine |
0.5021 |
pearson_manhattan |
0.4445 |
spearman_manhattan |
0.4284 |
pearson_euclidean |
0.4357 |
spearman_euclidean |
0.417 |
pearson_dot |
0.3751 |
spearman_dot |
0.3796 |
pearson_max |
0.4945 |
spearman_max |
0.5021 |
Knowledge Distillation
Metric |
Value |
negative_mse |
-20.7547 |
Translation
Metric |
Value |
src2trg_accuracy |
0.7432 |
trg2src_accuracy |
0.7432 |
mean_accuracy |
0.7432 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.5545 |
spearman_cosine |
0.5819 |
pearson_manhattan |
0.5104 |
spearman_manhattan |
0.5088 |
pearson_euclidean |
0.5046 |
spearman_euclidean |
0.5053 |
pearson_dot |
0.4726 |
spearman_dot |
0.4298 |
pearson_max |
0.5545 |
spearman_max |
0.5819 |
Knowledge Distillation
Metric |
Value |
negative_mse |
-19.7699 |
Translation
Metric |
Value |
src2trg_accuracy |
0.8781 |
trg2src_accuracy |
0.8832 |
mean_accuracy |
0.8807 |
Semantic Similarity
Metric |
Value |
pearson_cosine |
0.5064 |
spearman_cosine |
0.525 |
pearson_manhattan |
0.4517 |
spearman_manhattan |
0.4623 |
pearson_euclidean |
0.4423 |
spearman_euclidean |
0.4507 |
pearson_dot |
0.4202 |
spearman_dot |
0.4225 |
pearson_max |
0.5064 |
spearman_max |
0.525 |
Training Details
Training Datasets
en-ar
- Dataset: en-ar at d366ddd
- Size: 5,000 training samples
- Columns:
non_english
and label
- Approximate statistics based on the first 1000 samples:
|
non_english |
label |
type |
string |
list |
details |
- min: 4 tokens
- mean: 27.3 tokens
- max: 128 tokens
|
|
- Samples:
non_english |
label |
حسناً ان ما نقوم به اليوم .. هو ان نجبر الطلاب لتعلم الرياضيات |
[0.3943225145339966, 0.18910610675811768, -0.3788299858570099, 0.4386662542819977, 0.2727023661136627, ...] |
انها المادة الاهم .. |
[0.6257511377334595, -0.1750679910182953, -0.5734405517578125, 0.11480475962162018, 1.1682192087173462, ...] |
انا لا انفي لدقيقة واحدة ان الذين يهتمون بالحسابات اليدوية والذين هوايتهم القيام بذلك .. او القيام بالطرق التقليدية في اي مجال ان يقوموا بذلك كما يريدون . |
[-0.04564047232270241, 0.4971524775028229, 0.28066301345825195, -0.726702094078064, -0.17846377193927765, ...] |
- Loss:
MSELoss
en-fr
- Dataset: en-fr at d366ddd
- Size: 5,000 training samples
- Columns:
non_english
and label
- Approximate statistics based on the first 1000 samples:
|
non_english |
label |
type |
string |
list |
details |
- min: 3 tokens
- mean: 30.18 tokens
- max: 128 tokens
|
|
- Samples:
non_english |
label |
Je ne crois pas que ce soit justifié. |
[-0.361753910779953, 0.7323777079582214, 0.6518164277076721, -0.8461216688156128, -0.007496988866478205, ...] |
Je fais cette distinction entre ce qu'on force les gens à faire et les matières générales, et la matière que quelqu'un va apprendre parce que ça lui plait et peut-être même exceller dans ce domaine. |
[0.3047865629196167, 0.5270194411277771, 0.26616284251213074, 0.2612147927284241, 0.1950961947441101, ...] |
Quels sont les problèmes en relation avec ça? |
[0.2123892903327942, -0.09616081416606903, -0.41965243220329285, -0.5469444394111633, -0.6056491136550903, ...] |
- Loss:
MSELoss
en-de
- Dataset: en-de at d366ddd
- Size: 5,000 training samples
- Columns:
non_english
and label
- Approximate statistics based on the first 1000 samples:
|
non_english |
label |
type |
string |
list |
details |
- min: 4 tokens
- mean: 27.04 tokens
- max: 128 tokens
|
|
- Samples:
non_english |
label |
Ich denke, dass es sich aus diesem Grund lohnt, den Leuten das Rechnen von Hand beizubringen. |
[0.0960279330611229, 0.7833179831504822, -0.09527698159217834, 0.8104371428489685, 0.7545774579048157, ...] |
Außerdem gibt es ein paar bestimmte konzeptionelle Dinge, die das Rechnen per Hand rechtfertigen, aber ich glaube es sind sehr wenige. |
[-0.5939837098121643, 0.9714100956916809, 0.6800686717033386, -0.21585524082183838, -0.7509503364562988, ...] |
Eine Sache, die ich mich oft frage, ist Altgriechisch, und wie das zusammengehört. |
[-0.09777048230171204, 0.07093209028244019, -0.42989012598991394, -0.1457514613866806, 1.4382753372192383, ...] |
- Loss:
MSELoss
en-es
- Dataset: en-es at d366ddd
- Size: 5,000 training samples
- Columns:
non_english
and label
- Approximate statistics based on the first 1000 samples:
|
non_english |
label |
type |
string |
list |
details |
- min: 4 tokens
- mean: 25.42 tokens
- max: 128 tokens
|
|
- Samples:
non_english |
label |
Y luego hay ciertas aspectos conceptuales que pueden beneficiarse del cálculo a mano pero creo que son relativamente pocos. |
[-0.5939835906028748, 0.9714106917381287, 0.6800685524940491, -0.2158554196357727, -0.7509507536888123, ...] |
Algo que pregunto a menudo es sobre el griego antiguo y cómo se relaciona. |
[-0.09777048230171204, 0.07093209028244019, -0.42989012598991394, -0.1457514613866806, 1.4382753372192383, ...] |
Vean, lo que estamos haciendo ahora es forzar a la gente a aprender matemáticas. |
[0.3943225145339966, 0.18910610675811768, -0.3788299858570099, 0.4386662542819977, 0.2727023661136627, ...] |
- Loss:
MSELoss
en-tr
- Dataset: en-tr at d366ddd
- Size: 5,000 training samples
- Columns:
non_english
and label
- Approximate statistics based on the first 1000 samples:
|
non_english |
label |
type |
string |
list |
details |
- min: 4 tokens
- mean: 24.72 tokens
- max: 128 tokens
|
|
- Samples:
non_english |
label |
Eğer insanlar elle hesaba ilgililerse ya da öğrenmek için özel amaçları varsa konu ne kadar acayip olursa olsun bunu öğrenmeliler, engellemeyi bir an için bile önermiyorum. |
[-0.04564047232270241, 0.4971524775028229, 0.28066301345825195, -0.726702094078064, -0.17846377193927765, ...] |
İnsanların kendi ilgi alanlarını takip etmeleri, kesinlikle doğru bir şeydir. |
[0.2061387449502945, 0.5284574031829834, 0.3577779233455658, 0.28818392753601074, 0.17228049039840698, ...] |
Ben bir biçimde Antik Yunan hakkında ilgiliyimdir. ancak tüm nüfusu Antik Yunan gibi bir konu hakkında bilgi edinmeye zorlamamalıyız. |
[0.12050342559814453, 0.15652479231357574, 0.48636534810066223, -0.13693244755268097, 0.42764803767204285, ...] |
- Loss:
MSELoss
en-it
- Dataset: en-it at d366ddd
- Size: 5,000 training samples
- Columns:
non_english
and label
- Approximate statistics based on the first 1000 samples:
|
non_english |
label |
type |
string |
list |
details |
- min: 3 tokens
- mean: 26.41 tokens
- max: 128 tokens
|
|
- Samples:
non_english |
label |
Non credo che sia giustificato. |
[-0.36175352334976196, 0.7323781251907349, 0.651816189289093, -0.8461223840713501, -0.007496151141822338, ...] |
Perciò faccio distinzione tra quello che stiamo facendo fare alle persone, le materie che si ritengono principali, e le materie che le persone potrebbero seguire per loro interesse o forse a volte anche incitate a farlo. |
[0.3047865927219391, 0.5270194411277771, 0.26616284251213074, 0.2612147927284241, 0.1950961947441101, ...] |
Ma che argomenti porta la gente su questi temi? |
[0.2123885154724121, -0.09616123884916306, -0.4196523427963257, -0.5469440817832947, -0.6056501865386963, ...] |
- Loss:
MSELoss
Evaluation Datasets
en-ar
- Dataset: en-ar at d366ddd
- Size: 993 evaluation samples
- Columns:
non_english
and label
- Approximate statistics based on the first 1000 samples:
|
non_english |
label |
type |
string |
list |
details |
- min: 3 tokens
- mean: 28.03 tokens
- max: 128 tokens
|
|
- Samples:
non_english |
label |
شكرا جزيلا كريس. |
[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...] |
انه فعلا شرف عظيم لي ان أصعد المنصة للمرة الثانية. أنا في غاية الامتنان. |
[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...] |
لقد بهرت فعلا بهذا المؤتمر, وأريد أن أشكركم جميعا على تعليقاتكم الطيبة على ما قلته تلك الليلة. |
[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...] |
- Loss:
MSELoss
en-fr
- Dataset: en-fr at d366ddd
- Size: 992 evaluation samples
- Columns:
non_english
and label
- Approximate statistics based on the first 1000 samples:
|
non_english |
label |
type |
string |
list |
details |
- min: 4 tokens
- mean: 30.72 tokens
- max: 128 tokens
|
|
- Samples:
non_english |
label |
Merci beaucoup, Chris. |
[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...] |
C'est vraiment un honneur de pouvoir venir sur cette scène une deuxième fois. Je suis très reconnaissant. |
[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...] |
J'ai été très impressionné par cette conférence, et je tiens à vous remercier tous pour vos nombreux et sympathiques commentaires sur ce que j'ai dit l'autre soir. |
[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...] |
- Loss:
MSELoss
en-de
- Dataset: en-de at d366ddd
- Size: 991 evaluation samples
- Columns:
non_english
and label
- Approximate statistics based on the first 1000 samples:
|
non_english |
label |
type |
string |
list |
details |
- min: 4 tokens
- mean: 27.71 tokens
- max: 128 tokens
|
|
- Samples:
non_english |
label |
Vielen Dank, Chris. |
[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...] |
Es ist mir wirklich eine Ehre, zweimal auf dieser Bühne stehen zu dürfen. Tausend Dank dafür. |
[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...] |
Ich bin wirklich begeistert von dieser Konferenz, und ich danke Ihnen allen für die vielen netten Kommentare zu meiner Rede vorgestern Abend. |
[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...] |
- Loss:
MSELoss
en-es
- Dataset: en-es at d366ddd
- Size: 990 evaluation samples
- Columns:
non_english
and label
- Approximate statistics based on the first 1000 samples:
|
non_english |
label |
type |
string |
list |
details |
- min: 4 tokens
- mean: 26.47 tokens
- max: 128 tokens
|
|
- Samples:
non_english |
label |
Muchas gracias Chris. |
[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...] |
Y es en verdad un gran honor tener la oportunidad de venir a este escenario por segunda vez. Estoy extremadamente agradecido. |
[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...] |
He quedado conmovido por esta conferencia, y deseo agradecer a todos ustedes sus amables comentarios acerca de lo que tenía que decir la otra noche. |
[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...] |
- Loss:
MSELoss
en-tr
- Dataset: en-tr at d366ddd
- Size: 993 evaluation samples
- Columns:
non_english
and label
- Approximate statistics based on the first 1000 samples:
|
non_english |
label |
type |
string |
list |
details |
- min: 4 tokens
- mean: 25.4 tokens
- max: 128 tokens
|
|
- Samples:
non_english |
label |
Çok teşekkür ederim Chris. |
[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...] |
Bu sahnede ikinci kez yer alma fırsatına sahip olmak gerçekten büyük bir onur. Çok minnettarım. |
[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...] |
Bu konferansta çok mutlu oldum, ve anlattıklarımla ilgili güzel yorumlarınız için sizlere çok teşekkür ederim. |
[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...] |
- Loss:
MSELoss
en-it
- Dataset: en-it at d366ddd
- Size: 993 evaluation samples
- Columns:
non_english
and label
- Approximate statistics based on the first 1000 samples:
|
non_english |
label |
type |
string |
list |
details |
- min: 4 tokens
- mean: 27.94 tokens
- max: 128 tokens
|
|
- Samples:
non_english |
label |
Grazie mille, Chris. |
[-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...] |
E’ veramente un grande onore venire su questo palco due volte. Vi sono estremamente grato. |
[0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...] |
Sono impressionato da questa conferenza, e voglio ringraziare tutti voi per i tanti, lusinghieri commenti, anche perché... Ne ho bisogno!! |
[-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...] |
- Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 64
per_device_eval_batch_size
: 64
learning_rate
: 2e-05
num_train_epochs
: 5
warmup_ratio
: 0.1
fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: False
per_device_train_batch_size
: 64
per_device_eval_batch_size
: 64
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 5
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: None
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_sampler
: batch_sampler
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
en-ar loss |
en-it loss |
en-de loss |
en-fr loss |
en-es loss |
en-tr loss |
en-ar_mean_accuracy |
en-ar_negative_mse |
en-de_mean_accuracy |
en-de_negative_mse |
en-es_mean_accuracy |
en-es_negative_mse |
en-fr_mean_accuracy |
en-fr_negative_mse |
en-it_mean_accuracy |
en-it_negative_mse |
en-tr_mean_accuracy |
en-tr_negative_mse |
sts17-en-ar-test_spearman_max |
sts17-en-de-test_spearman_max |
sts17-en-tr-test_spearman_max |
sts17-es-en-test_spearman_max |
sts17-fr-en-test_spearman_max |
sts17-it-en-test_spearman_max |
0.2110 |
100 |
0.5581 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
0.4219 |
200 |
0.3071 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
0.6329 |
300 |
0.2675 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
0.8439 |
400 |
0.2606 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
1.0549 |
500 |
0.2589 |
0.2519 |
0.2498 |
0.2511 |
0.2488 |
0.2503 |
0.2512 |
0.1254 |
-25.1903 |
0.2523 |
-25.1089 |
0.2591 |
-25.0276 |
0.2409 |
-24.8803 |
0.2180 |
-24.9768 |
0.1158 |
-25.1219 |
0.0308 |
0.1281 |
0.1610 |
0.1465 |
0.0552 |
0.0518 |
1.2658 |
600 |
0.2504 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
1.4768 |
700 |
0.2427 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
1.6878 |
800 |
0.2337 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
1.8987 |
900 |
0.2246 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
2.1097 |
1000 |
0.2197 |
0.2202 |
0.2157 |
0.2151 |
0.2147 |
0.2139 |
0.2218 |
0.5841 |
-22.0204 |
0.8012 |
-21.5087 |
0.8495 |
-21.3935 |
0.7959 |
-21.4660 |
0.7815 |
-21.5699 |
0.6007 |
-22.1778 |
0.3346 |
0.4013 |
0.4727 |
0.3353 |
0.3827 |
0.3292 |
2.3207 |
1100 |
0.2163 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
2.5316 |
1200 |
0.2123 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
2.7426 |
1300 |
0.2069 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
2.9536 |
1400 |
0.2048 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
3.1646 |
1500 |
0.2009 |
0.2086 |
0.2029 |
0.2022 |
0.2012 |
0.2002 |
0.2111 |
0.7367 |
-20.8567 |
0.8739 |
-20.2247 |
0.9303 |
-20.0215 |
0.8755 |
-20.1213 |
0.8600 |
-20.2900 |
0.7165 |
-21.1119 |
0.4087 |
0.5473 |
0.5551 |
0.4724 |
0.4882 |
0.4690 |
3.3755 |
1600 |
0.2019 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
3.5865 |
1700 |
0.1989 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
3.7975 |
1800 |
0.196 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
4.0084 |
1900 |
0.1943 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
4.2194 |
2000 |
0.194 |
0.2040 |
0.1977 |
0.1973 |
0.1962 |
0.1947 |
0.2075 |
0.7714 |
-20.3955 |
0.8915 |
-19.7279 |
0.9449 |
-19.4724 |
0.8942 |
-19.6232 |
0.8807 |
-19.7699 |
0.7432 |
-20.7547 |
0.4425 |
0.5618 |
0.5819 |
0.5021 |
0.5334 |
0.5250 |
4.4304 |
2100 |
0.1951 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
4.6414 |
2200 |
0.1928 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
4.8523 |
2300 |
0.1909 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.060 kWh
- Carbon Emitted: 0.023 kg of CO2
- Hours Used: 0.179 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}