|
--- |
|
license: cc-by-nc-4.0 |
|
language: |
|
- ja |
|
pipeline_tag: image-to-text |
|
tags: |
|
- vision |
|
- image-captioning |
|
- VQA |
|
--- |
|
|
|
# Chat-Vector-LLaVA-v1.5-7b-JA Model Card |
|
## Model detail |
|
**Model type:** |
|
Chat-Vector-LLaVA-v1.5-7b-JA is a vision-language model that can converse about input images in Japanese.<br> |
|
This model was created by adding and subtracting the weights of the [llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b), [Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf), and [ELYZA-japanese-Llama-2-7b](https://huggingface.co/elyza/ELYZA-japanese-Llama-2-7b) models using the Chat Vector method as follows. |
|
``` |
|
ELYZA-japanese-Llama-2-7b + (llava-v1.5-7b - Llama-2-7b-hf) |
|
``` |
|
|
|
Chat-Vector-LLaVA-v1.5-7b-JAは、入力画像について日本語で会話できるvision-language modelです。<br> |
|
このモデルはChat Vectorの手法で[llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b)と[Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)と[ELYZA-japanese-Llama-2-7b](https://huggingface.co/elyza/ELYZA-japanese-Llama-2-7b)のモデルの重みを以下の通り加減算することで作成しました。 |
|
``` |
|
ELYZA-japanese-Llama-2-7b + (llava-v1.5-7b - Llama-2-7b-hf) |
|
``` |
|
|
|
**Comparing VLMs** |
|
|Model|JA-VG-VQA-500<br>(ROUGE-L)|JA-VLM-Bench-In-the-Wild<br>(ROUGE-L)|Heron-Bench(Detail)|Heron-Bench(Conv)|Heron-Bench(Complex)|Heron-Bench(Average) |
|
|-|-|-|-|-|-|-| |
|
|[Japanese Stable VLM](https://huggingface.co/stabilityai/japanese-stable-vlm)|-|40.50|25.15|51.23|37.84|38.07| |
|
|[EvoVLM-JP-v1-7B](https://huggingface.co/SakanaAI/EvoVLM-JP-v1-7B)|**19.70**|**51.25**|50.31|44.42|40.47|45.07| |
|
|[Heron BLIP Japanese StableLM Base 7B llava-620k](https://huggingface.co/turing-motors/heron-chat-blip-ja-stablelm-base-7b-v1-llava-620k)|14.51|33.26|49.09|41.51|45.72|45.44| |
|
|[Heron GIT Japanese StableLM Base 7B](https://huggingface.co/turing-motors/heron-chat-git-ja-stablelm-base-7b-v1)|15.18|37.82|42.77|**54.20**|43.53|46.83| |
|
|[llava-jp-1.3b-v1.0-620k](https://huggingface.co/toshi456/llava-jp-1.3b-v1.0-620k)|12.69|44.58|51.21|41.05|45.95|44.84| |
|
|[llava-jp-1.3b-v1.1](https://huggingface.co/toshi456/llava-jp-1.3b-v1.1)|13.33|44.40|50.00|51.83|**48.98**|**50.39**| |
|
|[chat-vector-llava-v1.5-7b-ja](https://huggingface.co/toshi456/chat-vector-llava-v1.5-7b-ja)|18.64|42.23|**53.61**|44.36|44.48|46.10| |
|
|
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/630af71ffaaea618ebc973db/jSW9RYPccrxaqrxntwtUb.png) |
|
|
|
## How to use the model |
|
**1. Download dependencies** |
|
``` |
|
git clone https://github.com/tosiyuki/vlm-chat-vector-ja.git |
|
``` |
|
|
|
**2. Inference** |
|
```python |
|
import requests |
|
import torch |
|
import transformers |
|
from PIL import Image |
|
|
|
from transformers.generation.streamers import TextStreamer |
|
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX |
|
from llava.conversation import conv_templates, SeparatorStyle |
|
from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM |
|
from llava.mm_utils import tokenizer_image_token, process_images |
|
|
|
|
|
if __name__ == "__main__": |
|
model_path = 'toshi456/chat-vector-llava-v1.5-7b-ja' |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32 |
|
|
|
model = LlavaLlamaForCausalLM.from_pretrained( |
|
model_path, |
|
device_map=device, |
|
low_cpu_mem_usage=True, |
|
use_safetensors=True, |
|
torch_dtype=torch.float16, |
|
).eval() |
|
tokenizer = transformers.AutoTokenizer.from_pretrained( |
|
model_path, |
|
model_max_length=1024, |
|
padding_side="right", |
|
use_fast=False, |
|
) |
|
model.get_model().vision_tower.load_model() |
|
model = model.to(device) |
|
|
|
eos_token_id_list = [ |
|
tokenizer.eos_token_id, |
|
tokenizer.bos_token_id, |
|
] |
|
|
|
# image pre-process |
|
image_url = "https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/sample.jpg" |
|
image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB') |
|
|
|
if not isinstance(image, list): |
|
image = [image] |
|
|
|
image_tensor = process_images(image, model.get_model().vision_tower.image_processor, model.config) |
|
if type(image_tensor) is list: |
|
image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor] |
|
else: |
|
image_tensor = image_tensor.to(model.device, dtype=torch.float16) |
|
|
|
# create prompt |
|
# ユーザー: <image>\n{prompt} |
|
conv_mode = "llava_llama_2" |
|
conv = conv_templates[conv_mode].copy() |
|
prompt = "猫の隣には何がありますか?" |
|
inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt |
|
conv.append_message(conv.roles[0], inp) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
|
|
input_ids = tokenizer_image_token( |
|
prompt, |
|
tokenizer, |
|
IMAGE_TOKEN_INDEX, |
|
return_tensors='pt' |
|
).unsqueeze(0) |
|
if device == "cuda": |
|
input_ids = input_ids.to(device) |
|
|
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 |
|
keywords = [stop_str] |
|
streamer = TextStreamer(tokenizer, skip_prompt=True, timeout=20.0) |
|
|
|
# parameter |
|
temperature = 0.0 |
|
top_p = 1.0 |
|
max_new_tokens=256 |
|
|
|
# predict |
|
with torch.inference_mode(): |
|
model.generate( |
|
inputs=input_ids, |
|
images=image_tensor, |
|
do_sample=True if temperature > 0 else False, |
|
temperature=temperature, |
|
top_p=top_p, |
|
max_new_tokens=max_new_tokens, |
|
streamer=streamer, |
|
use_cache=True, |
|
eos_token_id=eos_token_id_list, |
|
) |
|
|
|
"""猫の隣には、コンピューター(パソコン)があります。<s>""" |
|
|
|
``` |
|
|
|
## Acknowledgement |
|
- [LLaVA](https://llava-vl.github.io/) |
|
- [Chat Vector](https://arxiv.org/abs/2310.04799) |
|
|
|
## License |
|
cc-by-nc-4.0 |