legal_deberta / README.md
tthhanh's picture
update model card README.md
07195d9
|
raw
history blame
4.15 kB
metadata
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
model-index:
  - name: legal_deberta
    results: []

legal_deberta

This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4214
  • Law Precision: 0.6449
  • Law Recall: 0.92
  • Law F1: 0.7582
  • Law Number: 75
  • Violated by Precision: 0.8625
  • Violated by Recall: 0.92
  • Violated by F1: 0.8903
  • Violated by Number: 75
  • Violated on Precision: 0.625
  • Violated on Recall: 0.7333
  • Violated on F1: 0.6748
  • Violated on Number: 75
  • Violation Precision: 0.5683
  • Violation Recall: 0.6347
  • Violation F1: 0.5997
  • Violation Number: 616
  • Overall Precision: 0.6064
  • Overall Recall: 0.6944
  • Overall F1: 0.6475
  • Overall Accuracy: 0.9475

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Law Precision Law Recall Law F1 Law Number Violated by Precision Violated by Recall Violated by F1 Violated by Number Violated on Precision Violated on Recall Violated on F1 Violated on Number Violation Precision Violation Recall Violation F1 Violation Number Overall Precision Overall Recall Overall F1 Overall Accuracy
0.0391 11.11 500 0.3372 0.5652 0.8667 0.6842 75 0.8023 0.92 0.8571 75 0.6042 0.7733 0.6784 75 0.4690 0.6640 0.5497 616 0.5141 0.7146 0.5980 0.9283
0.0036 22.22 1000 0.4019 0.5667 0.9067 0.6974 75 0.7955 0.9333 0.8589 75 0.5455 0.72 0.6207 75 0.5681 0.6429 0.6032 616 0.5857 0.6992 0.6374 0.9443
0.0002 33.33 1500 0.3958 0.6 0.92 0.7263 75 0.8023 0.92 0.8571 75 0.5556 0.7333 0.6322 75 0.5476 0.6347 0.5880 616 0.5759 0.6944 0.6296 0.9463
0.0001 44.44 2000 0.4214 0.6449 0.92 0.7582 75 0.8625 0.92 0.8903 75 0.625 0.7333 0.6748 75 0.5683 0.6347 0.5997 616 0.6064 0.6944 0.6475 0.9475

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.13.3