lmind_hotpot_train8000_eval7405_v1_qa_5e-4_lora2

This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_hotpot_train8000_eval7405_v1_qa dataset. It achieves the following results on the evaluation set:

  • Loss: 4.0366
  • Accuracy: 0.4784

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 50.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2398 1.0 250 2.3236 0.5163
1.8301 2.0 500 2.4220 0.5124
1.3626 3.0 750 2.6153 0.5062
1.0112 4.0 1000 2.8349 0.4997
0.7198 5.0 1250 3.0756 0.4963
0.589 6.0 1500 3.2339 0.4943
0.4969 7.0 1750 3.3425 0.4935
0.4786 8.0 2000 3.4198 0.4924
0.4399 9.0 2250 3.4695 0.4911
0.4481 10.0 2500 3.5353 0.4913
0.4166 11.0 2750 3.4938 0.4894
0.429 12.0 3000 3.5450 0.4906
0.4193 13.0 3250 3.5636 0.4882
0.4276 14.0 3500 3.5626 0.4890
0.4071 15.0 3750 3.6309 0.4883
0.421 16.0 4000 3.5818 0.4890
0.4065 17.0 4250 3.6167 0.4869
0.4188 18.0 4500 3.6926 0.4857
0.3994 19.0 4750 3.6533 0.4863
0.4103 20.0 5000 3.6891 0.4864
0.397 21.0 5250 3.6973 0.4851
0.4118 22.0 5500 3.7214 0.4859
0.3944 23.0 5750 3.7193 0.4851
0.4036 24.0 6000 3.7567 0.4845
0.3939 25.0 6250 3.7891 0.4841
0.401 26.0 6500 3.7671 0.4828
0.3871 27.0 6750 3.7838 0.4835
0.4005 28.0 7000 3.8041 0.4831
0.3854 29.0 7250 3.8603 0.4830
0.3942 30.0 7500 3.8247 0.4812
0.3837 31.0 7750 3.8497 0.4815
0.3896 32.0 8000 3.8705 0.4836
0.3817 33.0 8250 3.8643 0.4818
0.3928 34.0 8500 3.9378 0.4807
0.3839 35.0 8750 3.9542 0.4810
0.3942 36.0 9000 3.9250 0.4806
0.381 37.0 9250 3.9220 0.4792
0.3918 38.0 9500 3.9584 0.4781
0.3787 39.0 9750 3.9241 0.4776
0.3897 40.0 10000 3.9434 0.4773
0.3786 41.0 10250 3.9411 0.4793
0.3864 42.0 10500 3.9933 0.4766
0.377 43.0 10750 4.0015 0.4787
0.3887 44.0 11000 3.9979 0.4788
0.3805 45.0 11250 3.9764 0.4796
0.3827 46.0 11500 3.9990 0.4786
0.3737 47.0 11750 4.0059 0.4792
0.3807 48.0 12000 4.0746 0.4798
0.3772 49.0 12250 4.0123 0.4776
0.3808 50.0 12500 4.0366 0.4784

Framework versions

  • PEFT 0.5.0
  • Transformers 4.41.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tyzhu/lmind_hotpot_train8000_eval7405_v1_qa_5e-4_lora2

Base model

Qwen/Qwen1.5-4B
Adapter
(272)
this model

Dataset used to train tyzhu/lmind_hotpot_train8000_eval7405_v1_qa_5e-4_lora2

Evaluation results

  • Accuracy on tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
    self-reported
    0.478