tyzhu's picture
End of training
735dc98 verified
metadata
license: other
base_model: Qwen/Qwen1.5-4B
tags:
  - generated_from_trainer
datasets:
  - tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
metrics:
  - accuracy
model-index:
  - name: lmind_hotpot_train8000_eval7405_v1_qa_5e-4_lora2
    results:
      - task:
          name: Causal Language Modeling
          type: text-generation
        dataset:
          name: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
          type: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.47844444444444445
library_name: peft

lmind_hotpot_train8000_eval7405_v1_qa_5e-4_lora2

This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_hotpot_train8000_eval7405_v1_qa dataset. It achieves the following results on the evaluation set:

  • Loss: 4.0366
  • Accuracy: 0.4784

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 50.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2398 1.0 250 2.3236 0.5163
1.8301 2.0 500 2.4220 0.5124
1.3626 3.0 750 2.6153 0.5062
1.0112 4.0 1000 2.8349 0.4997
0.7198 5.0 1250 3.0756 0.4963
0.589 6.0 1500 3.2339 0.4943
0.4969 7.0 1750 3.3425 0.4935
0.4786 8.0 2000 3.4198 0.4924
0.4399 9.0 2250 3.4695 0.4911
0.4481 10.0 2500 3.5353 0.4913
0.4166 11.0 2750 3.4938 0.4894
0.429 12.0 3000 3.5450 0.4906
0.4193 13.0 3250 3.5636 0.4882
0.4276 14.0 3500 3.5626 0.4890
0.4071 15.0 3750 3.6309 0.4883
0.421 16.0 4000 3.5818 0.4890
0.4065 17.0 4250 3.6167 0.4869
0.4188 18.0 4500 3.6926 0.4857
0.3994 19.0 4750 3.6533 0.4863
0.4103 20.0 5000 3.6891 0.4864
0.397 21.0 5250 3.6973 0.4851
0.4118 22.0 5500 3.7214 0.4859
0.3944 23.0 5750 3.7193 0.4851
0.4036 24.0 6000 3.7567 0.4845
0.3939 25.0 6250 3.7891 0.4841
0.401 26.0 6500 3.7671 0.4828
0.3871 27.0 6750 3.7838 0.4835
0.4005 28.0 7000 3.8041 0.4831
0.3854 29.0 7250 3.8603 0.4830
0.3942 30.0 7500 3.8247 0.4812
0.3837 31.0 7750 3.8497 0.4815
0.3896 32.0 8000 3.8705 0.4836
0.3817 33.0 8250 3.8643 0.4818
0.3928 34.0 8500 3.9378 0.4807
0.3839 35.0 8750 3.9542 0.4810
0.3942 36.0 9000 3.9250 0.4806
0.381 37.0 9250 3.9220 0.4792
0.3918 38.0 9500 3.9584 0.4781
0.3787 39.0 9750 3.9241 0.4776
0.3897 40.0 10000 3.9434 0.4773
0.3786 41.0 10250 3.9411 0.4793
0.3864 42.0 10500 3.9933 0.4766
0.377 43.0 10750 4.0015 0.4787
0.3887 44.0 11000 3.9979 0.4788
0.3805 45.0 11250 3.9764 0.4796
0.3827 46.0 11500 3.9990 0.4786
0.3737 47.0 11750 4.0059 0.4792
0.3807 48.0 12000 4.0746 0.4798
0.3772 49.0 12250 4.0123 0.4776
0.3808 50.0 12500 4.0366 0.4784

Framework versions

  • PEFT 0.5.0
  • Transformers 4.41.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1