license: cc-by-nc-4.0
tags:
- mlabonne/NeuralMarcoro14-7B
- dpo
- 7B
- winograd
- mmlu_abstract_algebra
- mistral
datasets:
- hromi/winograd_dpo_basic
base_model: mlabonne/NeuralMarcoro14-7B
model-index:
- name: Turdus
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 73.38
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=udkai/Turdus
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.56
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=udkai/Turdus
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.52
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=udkai/Turdus
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 67.11
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=udkai/Turdus
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 86.66
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=udkai/Turdus
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 67.7
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=udkai/Turdus
name: Open LLM Leaderboard
udkai_Turdus
A less contaminated version of udkai/Garrulus and the second model to be discussed in the paper Subtle DPO-Contamination with modified Winogrande increases TruthfulQA, Hellaswag & ARC.
Contrary to Garrulus which was obtained after 2 epochs, this model was obtained after one single epoch of "direct preference optimization" of NeuralMarcoro14-7B with [https://huggingface.co/datasets/hromi/winograd_dpo ] .
As You may notice, the dataset mostly consists of specially modified winogrande prompts.
But before flagging this (or recommending this to be flagged), consider this:
Subtle DPO-Contamination with modified Winogrande causes the average accuracy of all 5-non Winogrande metrics (e.g. including also MMLU and GSM8K) to be 0.2% higher than the underlying model.
Model | ARC | HellaSwag | MMLU | Truthful QA | GSM8K | Average |
---|---|---|---|---|---|---|
mlabonne/NeuralMarcoro14-7B | 71.42 | 87.59 | 64.84 | 65.64 | 70.74 | 72.046 |
udkai/Turdus | 73.38 | 88.56 | 64.52 | 67.11 | 67.7 | 72,254 |
Yes, as strange as it may sound, one can indeed increase ARC from 71.42% to 73.38 % with one single epoch of cca 1200 repetitive winograd schematas...
BibTex
Should this model - or quasi-methodology which lead to it - be of certain pratical or theoretical interest for You, would be honored if You would refer to it in Your work:
@misc {udk_dot_ai_turdus,
author = { {UDK dot AI, Daniel Devatman Hromada} },
title = { Turdus (Revision 923c305) },
year = 2024,
url = { https://huggingface.co/udkai/Turdus },
doi = { 10.57967/hf/1611 },
publisher = { Hugging Face }
}
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 74.66 |
AI2 Reasoning Challenge (25-Shot) | 73.38 |
HellaSwag (10-Shot) | 88.56 |
MMLU (5-Shot) | 64.52 |
TruthfulQA (0-shot) | 67.11 |
Winogrande (5-shot) | 86.66 |
GSM8k (5-shot) | 67.70 |