uf-aice-lab's picture
Update README.md
f42f2a2 verified
|
raw
history blame
1.68 kB
metadata
license: mit

This is the structure of the BLIPNet model. You can load the model with it, or you can create a bigger model for your task.

    class BLIPNet(torch.nn.Module):
        def __init__(self, ):
            super().__init__()
            #Generation Model
            self.model = BlipForConditionalGeneration.from_pretrained(MODEL_NAME, cache_dir="model")
            #Same with https://huggingface.co/uf-aice-lab/BLIP-Math
            self.ebd_dim = ebd_dim= 443136

            #Classification Model
            fc_dim = 64  # You can choose a higher number for better performance, for example, 1024.
            self.head = nn.Sequential(
                nn.Linear(self.ebd_dim, fc_dim),
                nn.ReLU(), 
            )
            self.score = nn.Linear(fc_dim, 5) #5 classes


        def forward(self, pixel_values, input_ids):
            outputs = self.model(input_ids=input_ids, pixel_values=pixel_values, labels=input_ids)
            image_text_embeds = self.model.vision_model(pixel_values, return_dict=True).last_hidden_state
            image_text_embeds = self.head(image_embeds.view(-1, self.ebd_dim))

            #A classification model is based on embeddings from a generative model to leverage BLIP's powerful image-text encoding capabilities.
            logits = self.score(image_embeds)

            #generated text, probabilities of classification
            return outputs, logits  

You need to input the sample in the same way as: https://huggingface.co/uf-aice-lab/BLIP-Math Then you can get the text and score at the same time.