indobert-hoax / README.md
itshiroto's picture
umn-cyber/indobert-hoax-detection
cc05979 verified
|
raw
history blame
2.03 kB
metadata
library_name: transformers
license: mit
base_model: indobenchmark/indobert-base-p1
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: indobert-hoax-detection
    results: []

indobert-hoax-detection

This model is a fine-tuned version of indobenchmark/indobert-base-p1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0543
  • Accuracy: 0.9848
  • F1: 0.9840
  • Precision: 0.9857
  • Recall: 0.9822

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.0898 1.0 739 0.0585 0.9875 0.9869 0.9858 0.9879
0.0464 2.0 1478 0.0493 0.9861 0.9854 0.9858 0.9851
0.0247 3.0 2217 0.0629 0.9868 0.9862 0.9830 0.9893
0.0097 4.0 2956 0.0773 0.9871 0.9865 0.9858 0.9872
0.0031 5.0 3695 0.0862 0.9854 0.9847 0.9851 0.9844

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1
  • Datasets 2.19.2
  • Tokenizers 0.20.1