|
--- |
|
pipeline_tag: image-to-text |
|
tags: |
|
- image-captioning |
|
- visual-question-answering |
|
datasets: |
|
- sbu_captions |
|
- visual_genome |
|
- HuggingFaceM4/VQAv2 |
|
- ChristophSchuhmann/MS_COCO_2017_URL_TEXT |
|
widget: |
|
- text: "What is the invoice number?" |
|
src: "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" |
|
- text: "What is the purchase amount?" |
|
src: "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/contract.jpeg" |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: unum-cloud/uform-vl-english |
|
--- |
|
|
|
<h1 align="center">UForm</h1> |
|
<h3 align="center"> |
|
Pocket-Sized Multimodal AI<br/> |
|
For Content Understanding and Generation<br/> |
|
</h3> |
|
|
|
<Gallery /> |
|
|
|
## Description |
|
|
|
UForm-Gen is a small generative vision-language model primarily designed for Image Captioning and Visual Question Answering. The model consists of two parts: |
|
|
|
1. [UForm Vision Encoder](https://huggingface.co/unum-cloud/uform-vl-english) |
|
2. [Sheared-LLaMA-1.3B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B) manually tuned on the instructions dataset |
|
|
|
The model was pre-trained on: MSCOCO, SBU Captions, Visual Genome, VQAv2, GQA and a few internal datasets. |
|
|
|
### Usage |
|
|
|
```bash |
|
pip install uform |
|
``` |
|
|
|
The generative model can be used to caption images, summarize their content, or answer questions about them. |
|
The exact behavior is controlled by prompts. |
|
|
|
```python |
|
from uform.gen_model import VLMForCausalLM, VLMProcessor |
|
|
|
model = VLMForCausalLM.from_pretrained("unum-cloud/uform-gen") |
|
processor = VLMProcessor.from_pretrained("unum-cloud/uform-gen") |
|
|
|
# [cap] Narrate the contents of the image with precision. |
|
# [cap] Summarize the visual content of the image. |
|
# [vqa] What is the main subject of the image? |
|
prompt = "[cap] Summarize the visual content of the image." |
|
image = Image.open("zebra.jpg") |
|
|
|
inputs = processor(texts=[prompt], images=[image], return_tensors="pt") |
|
with torch.inference_mode(): |
|
output = model.generate( |
|
**inputs, |
|
do_sample=False, |
|
use_cache=True, |
|
max_new_tokens=128, |
|
eos_token_id=32001, |
|
pad_token_id=processor.tokenizer.pad_token_id |
|
) |
|
|
|
prompt_len = inputs["input_ids"].shape[1] |
|
decoded_text = processor.batch_decode(output[:, prompt_len:])[0] |
|
``` |
|
|
|
|
|
## Evaluation |
|
|
|
For captioning evaluation we measure CLIPScore and RefCLIPScore¹. |
|
|
|
| Model | Size | Caption Length | CLIPScore | RefCLIPScore | |
|
| :---------------------------------- | ---: | -------------: | --------: | -----------: | |
|
| `llava-hf/llava-1.5-7b-hf` | 7B | Long | 0.878 | 0.529 | |
|
| `llava-hf/llava-1.5-7b-hf` | 7B | Short | 0.886 | 0.531 | |
|
| | |
|
| `Salesforce/instructblip-vicuna-7b` | 7B | Long | 0.902 | 0.534 | |
|
| `Salesforce/instructblip-vicuna-7b` | 7B | Short | 0.848 | 0.523 | |
|
| | | |
|
| `unum-cloud/uform-gen` | 1.5B | Long | 0.847 | 0.523 | |
|
| `unum-cloud/uform-gen` | 1.5B | Short | 0.842 | 0.522 | |
|
|
|
Results for VQAv2 evaluation. |
|
|
|
| Model | Size | Accuracy | |
|
| :------------------------- | ---: | -------: | |
|
| `llava-hf/llava-1.5-7b-hf` | 7B | 78.5 | |
|
| `unum-cloud/uform-gen` | 1.5B | 66.5 | |
|
|
|
¹ We used `apple/DFN5B-CLIP-ViT-H-14-378` CLIP model. |
|
|
|
|
|
## Speed |
|
|
|
On RTX 3090, the following performance is expected on text token generation using `float16`, equivalent PyTorch settings, and greedy decoding. |
|
|
|
| Model | Size | Speed | Speedup | |
|
| :---------------------------------- | ---: | ------------------: | --------: | |
|
| `llava-hf/llava-1.5-7b-hf` | 7B | ~ 40 tokens/second | | |
|
| `Salesforce/instructblip-vicuna-7b` | 7B | ~ 40 tokens/second | | |
|
| `unum-cloud/uform-gen` | 1.5B | ~ 140 tokens/second | __x 3.5__ | |
|
|
|
|