File size: 5,642 Bytes
e2f434b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76a162e
1be8918
e2f434b
 
 
 
1be8918
5f9c77b
b1a1a9e
e2f434b
 
 
 
 
1b47ea4
e2f434b
 
1b47ea4
e2f434b
 
 
1b47ea4
280b539
 
46db916
9a76c9a
76a162e
 
 
 
6485505
76a162e
 
 
1b47ea4
76a162e
 
1b47ea4
76a162e
6485505
8e0f973
76a162e
1b47ea4
76a162e
6485505
76a162e
f32dcdf
76a162e
 
e2f434b
 
 
8e0f973
e2f434b
 
 
 
 
d85536f
e2f434b
d85536f
e2f434b
 
593d1eb
da0559e
bf17ec9
 
f51cc64
2dc00e8
f51cc64
 
f3687a8
 
e2f434b
d950e2a
e2f434b
 
 
 
 
 
 
 
 
 
 
 
 
d85536f
e2f434b
 
 
 
d85536f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
language:
- en
tags:
- upstage
- llama-2
- instruct
- instruction
pipeline_tag: text-generation
---
# LLaMa-2-70b-instruct-v2 model card

## Model Details

* **Developed by**: [Upstage](https://en.upstage.ai)
* **Backbone Model**: [LLaMA-2](https://github.com/facebookresearch/llama/tree/main)
* **Language(s)**: English
* **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers)
* **License**: Fine-tuned checkpoints is licensed under the Non-Commercial Creative Commons license ([CC BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/))
* **Where to send comments**: Instructions on how to provide feedback or comments on a model can be found by opening an issue in the [Hugging Face community's model repository](https://huggingface.co/upstage/Llama-2-70b-instruct-v2/discussions)
* **Contact**: For questions and comments about the model, please email [[email protected]](mailto:[email protected])

## Dataset Details

### Used Datasets
- Orca-style dataset
- Alpaca-style dataset
- No other data was used except for the dataset mentioned above

### Prompt Template
```
### System:
{System}

### User:
{User}

### Assistant:
{Assistant}
```

## Usage

- Tested on A100 80GB
- Our model can handle up to 10k+ input tokens, thanks to the `rope_scaling` option

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer

tokenizer = AutoTokenizer.from_pretrained("upstage/Llama-2-70b-instruct-v2")
model = AutoModelForCausalLM.from_pretrained(
    "upstage/Llama-2-70b-instruct-v2",
    device_map="auto",
    torch_dtype=torch.float16,
    load_in_8bit=True,
    rope_scaling={"type": "dynamic", "factor": 2} # allows handling of longer inputs
)

prompt = "### User:\nThomas is healthy, but he has to go to the hospital. What could be the reasons?\n\n### Assistant:\n"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
del inputs["token_type_ids"]
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

output = model.generate(**inputs, streamer=streamer, use_cache=True, max_new_tokens=float('inf'))
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
```

## Hardware and Software

* **Hardware**: We utilized an A100x8 * 4 for training our model
* **Training Factors**: We fine-tuned this model using a combination of the [DeepSpeed library](https://github.com/microsoft/DeepSpeed) and the [HuggingFace Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) / [HuggingFace Accelerate](https://huggingface.co/docs/accelerate/index)

## Evaluation Results

### Overview
- We conducted a performance evaluation based on the tasks being evaluated on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
We evaluated our model on four benchmark datasets, which include `ARC-Challenge`, `HellaSwag`, `MMLU`, and `TruthfulQA`
We used the [lm-evaluation-harness repository](https://github.com/EleutherAI/lm-evaluation-harness), specifically commit [b281b0921b636bc36ad05c0b0b0763bd6dd43463](https://github.com/EleutherAI/lm-evaluation-harness/tree/b281b0921b636bc36ad05c0b0b0763bd6dd43463).
- We used [MT-bench](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge), a set of challenging multi-turn open-ended questions, to evaluate the models

### Main Results
| Model | H4(Avg) | ARC | HellaSwag | MMLU | TruthfulQA | | MT_Bench |
|--------------------------------------------------------------------|----------|----------|----------|------|----------|-|-------------|
| **[Llama-2-70b-instruct-v2](https://huggingface.co/upstage/Llama-2-70b-instruct-v2)**(***Ours***, ***Open LLM Leaderboard***) | **73** | **71.1** | **87.9** | **70.6** | **62.2** | | **7.44063** |
| [Llama-2-70b-instruct](https://huggingface.co/upstage/Llama-2-70b-instruct) (Ours, Open LLM Leaderboard) | 72.3 | 70.9 | 87.5 | 69.8 | 61 | | 7.24375  |
| [llama-65b-instruct](https://huggingface.co/upstage/llama-65b-instruct) (Ours, Open LLM Leaderboard) | 69.4 | 67.6 | 86.5 | 64.9 | 58.8 | | |
| Llama-2-70b-hf | 67.3 | 67.3 | 87.3 | 69.8 | 44.9 | | |
| [llama-30b-instruct-2048](https://huggingface.co/upstage/llama-30b-instruct-2048) (Ours, Open LLM Leaderboard) | 67.0 | 64.9 | 84.9 | 61.9 | 56.3 | | |
| [llama-30b-instruct](https://huggingface.co/upstage/llama-30b-instruct) (Ours, Open LLM Leaderboard) | 65.2 | 62.5 | 86.2 | 59.4 | 52.8 | | |
| llama-65b | 64.2 | 63.5 | 86.1 | 63.9 | 43.4 | | |
| falcon-40b-instruct | 63.4 | 61.6 | 84.3 | 55.4 | 52.5 | | |

### Scripts for H4 Score Reproduction
- Prepare evaluation environments:
```
# clone the repository
git clone https://github.com/EleutherAI/lm-evaluation-harness.git
# check out the specific commit
git checkout b281b0921b636bc36ad05c0b0b0763bd6dd43463
# change to the repository directory
cd lm-evaluation-harness
```

## Ethical Issues

### Ethical Considerations
- There were no ethical issues involved, as we did not include the benchmark test set or the training set in the model's training process

## Contact Us

### Why Upstage LLM?
- [Upstage](https://en.upstage.ai)'s LLM research has yielded remarkable results. Our 70B model **outperforms all models around the world**,  positioning itself as the leading performer. Recognizing the immense potential in implementing private LLM to actual businesses, we invite you to easily apply private LLM and fine-tune it with your own data. For a seamless and tailored solution, please do not hesitate to reach out to us. ► [click here to contact](https://www.upstage.ai/private-llm?utm_source=huggingface&utm_medium=link&utm_campaign=privatellm)