Medical-NER / README.md
urbija's picture
cer
9aef5fa verified
metadata
license: mit
base_model: Clinical-AI-Apollo/Medical-NER
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: Medical-NER
    results: []

Medical-NER

This model is a fine-tuned version of Clinical-AI-Apollo/Medical-NER on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1694
  • Precision: 0.9149
  • Recall: 0.8666
  • F1: 0.8901
  • Accuracy: 0.9427

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0013 1.0 4159 0.1694 0.9149 0.8666 0.8901 0.9427

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.1