metadata
tags: autotrain
language: ja
widget:
- text: RustでWebAssemblyインタプリタを作った話+webassembly+rust
- text: Goのロギングライブラリ 2021年冬 golang library logging go
- text: VimとTUIツールをなめらかに切り替える ranger tig git vim
datasets:
- vabadeh213/autotrain-data-iine_classification10
co2_eq_emissions: 7.351885824089346
Model Trained Using AutoTrain
- Problem type: Binary Classification
- Model ID: 737422470
- CO2 Emissions (in grams): 7.351885824089346
Validation Metrics
- Loss: 0.39456263184547424
- Accuracy: 0.8279088689991864
- Precision: 0.6869806094182825
- Recall: 0.17663817663817663
- AUC: 0.7937892215111646
- F1: 0.2810198300283286
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/vabadeh213/autotrain-iine_classification10-737422470
Or Python API:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("vabadeh213/autotrain-iine_classification10-737422470", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("vabadeh213/autotrain-iine_classification10-737422470", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)