|
--- |
|
tags: autotrain |
|
language: ja |
|
widget: |
|
- text: "RustでWebAssemblyインタプリタを作った話+webassembly+rust" |
|
- text: "Goのロギングライブラリ 2021年冬 golang library logging go" |
|
- text: "VimとTUIツールをなめらかに切り替える ranger tig git vim" |
|
datasets: |
|
- vabadeh213/autotrain-data-iine_classification10 |
|
co2_eq_emissions: 7.351885824089346 |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Binary Classification |
|
- Model ID: 737422470 |
|
- CO2 Emissions (in grams): 7.351885824089346 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.39456263184547424 |
|
- Accuracy: 0.8279088689991864 |
|
- Precision: 0.6869806094182825 |
|
- Recall: 0.17663817663817663 |
|
- AUC: 0.7937892215111646 |
|
- F1: 0.2810198300283286 |
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/vabadeh213/autotrain-iine_classification10-737422470 |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("vabadeh213/autotrain-iine_classification10-737422470", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("vabadeh213/autotrain-iine_classification10-737422470", use_auth_token=True) |
|
|
|
inputs = tokenizer("I love AutoTrain", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |