venture2's picture
Create MODEL
4544866 verified
# File: boundless_perfect_intelligence.py
import torch
import torch.nn as nn
import os
import numpy as np
import pickle
from threading import Thread
from queue import Queue
# Infinite Memory Simulation with Dynamic Scaling
class InfiniteMemory:
def __init__(self, memory_dir="infinite_memory", chunk_size=1e6):
self.memory_dir = memory_dir
self.chunk_size = int(chunk_size)
self.current_chunk = 0
self.memory_map = {}
os.makedirs(self.memory_dir, exist_ok=True)
def _get_chunk_path(self, chunk_id):
return os.path.join(self.memory_dir, f"chunk_{chunk_id}.pkl")
def write(self, key, value):
"""Dynamically writes data to infinite memory."""
if len(self.memory_map) >= self.chunk_size:
self._flush_to_disk()
self.memory_map = {}
self.current_chunk += 1
self.memory_map[key] = value
def read(self, key):
"""Dynamically reads data from infinite memory."""
if key in self.memory_map:
return self.memory_map[key]
for chunk_id in range(self.current_chunk + 1):
chunk_path = self._get_chunk_path(chunk_id)
if os.path.exists(chunk_path):
with open(chunk_path, "rb") as f:
chunk_data = pickle.load(f)
if key in chunk_data:
return chunk_data[key]
return "Not Found"
def simulate_data(self, num_items=1e9):
"""Simulates preloading infinite memory."""
print(f"Preloading {num_items:.0f} items into memory...")
for i in range(int(num_items)):
self.write(f"key_{i}", np.random.rand(1000)) # Large simulated data
print("Preload complete.")
# Recursive Reasoning with Infinite Depth
class InfiniteReasoningNet(nn.Module):
def __init__(self, base_dim):
super(InfiniteReasoningNet, self).__init__()
self.base_layer = nn.Sequential(
nn.Linear(base_dim, base_dim * 2),
nn.ReLU(),
nn.Linear(base_dim * 2, base_dim)
)
def forward(self, x, max_depth=None):
"""Simulates infinite reasoning."""
depth = 0
while max_depth is None or depth < max_depth:
x = self.base_layer(x)
depth += 1
return x
# Infinite Multimodal Generator
class InfiniteMultimodalGenerator(nn.Module):
def __init__(self, base_dim):
super(InfiniteMultimodalGenerator, self).__init__()
self.base_dim = base_dim
self.style_layer = nn.Sequential(
nn.Linear(base_dim, base_dim * 4),
nn.ReLU()
)
self.content_layer = nn.Sequential(
nn.Linear(base_dim, base_dim * 4),
nn.Tanh()
)
self.output_layer = nn.Linear(base_dim * 4, 1) # Adaptively scales outputs
def forward(self, style_vector, content_vector, resolution=None):
"""Generates outputs at arbitrary resolution."""
style_features = self.style_layer(style_vector)
content_features = self.content_layer(content_vector)
combined_features = style_features + content_features
# Simulate output generation based on resolution
if resolution:
pixels = resolution[0] * resolution[1] * 3
output = self.output_layer(combined_features)
return output.view(-1, 3, resolution[0], resolution[1])
return combined_features
# Unlimited Task Manager
class UnlimitedTaskManager:
def __init__(self):
self.task_queue = Queue()
self.threads = []
def add_task(self, task, *args):
"""Adds a task to the infinite task queue."""
self.task_queue.put((task, args))
def _worker(self):
while True:
task, args = self.task_queue.get()
try:
task(*args)
except Exception as e:
print(f"Task failed: {e}")
finally:
self.task_queue.task_done()
def start_workers(self, num_workers=1000):
"""Starts an infinite number of workers."""
for _ in range(num_workers):
thread = Thread(target=self._worker, daemon=True)
thread.start()
self.threads.append(thread)
def wait_for_completion(self):
"""Waits for all tasks to finish."""
self.task_queue.join()
# Unified Boundless API
class BoundlessArtificialPerfectIntelligence(nn.Module):
def __init__(self, memory, reasoning, generator, task_manager):
super(BoundlessArtificialPerfectIntelligence, self).__init__()
self.memory = memory
self.reasoning = reasoning
self.generator = generator
self.task_manager = task_manager
def forward(self, mode, **kwargs):
if mode == "reasoning":
input_tensor = kwargs.get("input_tensor")
max_depth = kwargs.get("max_depth")
return self.reasoning(input_tensor, max_depth)
elif mode == "memory_write":
key = kwargs.get("key")
value = kwargs.get("value")
self.memory.write(key, value)
return f"Stored key: {key}"
elif mode == "memory_read":
key = kwargs.get("key")
return self.memory.read(key)
elif mode == "generation":
style_vector = kwargs.get("style_vector")
content_vector = kwargs.get("content_vector")
resolution = kwargs.get("resolution")
return self.generator(style_vector, content_vector, resolution)
elif mode == "task_add":
task = kwargs.get("task")
args = kwargs.get("args", [])
self.task_manager.add_task(task, *args)
return "Task added to the infinite task queue."
return "Invalid Mode"
# Main Execution
if __name__ == "__main__":
# Configuration
base_dim = 65536
# Components
infinite_memory = InfiniteMemory()
infinite_memory.simulate_data(num_items=1e6) # Simulate 1 million items
reasoning_net = InfiniteReasoningNet(base_dim)
generator = InfiniteMultimodalGenerator(base_dim)
task_manager = UnlimitedTaskManager()
task_manager.start_workers(num_workers=1000)
# Initialize Boundless API
api = BoundlessArtificialPerfectIntelligence(infinite_memory, reasoning_net, generator, task_manager)
# Test API
print("Reasoning Output:", api("reasoning", input_tensor=torch.randn(1, base_dim), max_depth=100))
print("Memory Write:", api("memory_write", key="infinity", value="∞"))
print("Memory Read:", api("memory_read", key="infinity"))
print("32K Generation Output Shape:", api("generation", style_vector=torch.randn(1, base_dim), content_vector=torch.randn(1, base_dim), resolution=(32768, 32768)).shape)
# Infinite Task Example
def example_task(x, y):
print(f"Task executed: {x} + {y} = {x + y}")
for i in range(10):
api("task_add", task=example_task, args=(i, i * 2))
task_manager.wait_for_completion()