|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import os |
|
import numpy as np |
|
import pickle |
|
from threading import Thread |
|
from queue import Queue |
|
|
|
|
|
class InfiniteMemory: |
|
def __init__(self, memory_dir="infinite_memory", chunk_size=1e6): |
|
self.memory_dir = memory_dir |
|
self.chunk_size = int(chunk_size) |
|
self.current_chunk = 0 |
|
self.memory_map = {} |
|
|
|
os.makedirs(self.memory_dir, exist_ok=True) |
|
|
|
def _get_chunk_path(self, chunk_id): |
|
return os.path.join(self.memory_dir, f"chunk_{chunk_id}.pkl") |
|
|
|
def write(self, key, value): |
|
"""Dynamically writes data to infinite memory.""" |
|
if len(self.memory_map) >= self.chunk_size: |
|
self._flush_to_disk() |
|
self.memory_map = {} |
|
self.current_chunk += 1 |
|
self.memory_map[key] = value |
|
|
|
def read(self, key): |
|
"""Dynamically reads data from infinite memory.""" |
|
if key in self.memory_map: |
|
return self.memory_map[key] |
|
for chunk_id in range(self.current_chunk + 1): |
|
chunk_path = self._get_chunk_path(chunk_id) |
|
if os.path.exists(chunk_path): |
|
with open(chunk_path, "rb") as f: |
|
chunk_data = pickle.load(f) |
|
if key in chunk_data: |
|
return chunk_data[key] |
|
return "Not Found" |
|
|
|
def simulate_data(self, num_items=1e9): |
|
"""Simulates preloading infinite memory.""" |
|
print(f"Preloading {num_items:.0f} items into memory...") |
|
for i in range(int(num_items)): |
|
self.write(f"key_{i}", np.random.rand(1000)) |
|
print("Preload complete.") |
|
|
|
|
|
class InfiniteReasoningNet(nn.Module): |
|
def __init__(self, base_dim): |
|
super(InfiniteReasoningNet, self).__init__() |
|
self.base_layer = nn.Sequential( |
|
nn.Linear(base_dim, base_dim * 2), |
|
nn.ReLU(), |
|
nn.Linear(base_dim * 2, base_dim) |
|
) |
|
|
|
def forward(self, x, max_depth=None): |
|
"""Simulates infinite reasoning.""" |
|
depth = 0 |
|
while max_depth is None or depth < max_depth: |
|
x = self.base_layer(x) |
|
depth += 1 |
|
return x |
|
|
|
|
|
class InfiniteMultimodalGenerator(nn.Module): |
|
def __init__(self, base_dim): |
|
super(InfiniteMultimodalGenerator, self).__init__() |
|
self.base_dim = base_dim |
|
self.style_layer = nn.Sequential( |
|
nn.Linear(base_dim, base_dim * 4), |
|
nn.ReLU() |
|
) |
|
self.content_layer = nn.Sequential( |
|
nn.Linear(base_dim, base_dim * 4), |
|
nn.Tanh() |
|
) |
|
self.output_layer = nn.Linear(base_dim * 4, 1) |
|
|
|
def forward(self, style_vector, content_vector, resolution=None): |
|
"""Generates outputs at arbitrary resolution.""" |
|
style_features = self.style_layer(style_vector) |
|
content_features = self.content_layer(content_vector) |
|
combined_features = style_features + content_features |
|
|
|
|
|
if resolution: |
|
pixels = resolution[0] * resolution[1] * 3 |
|
output = self.output_layer(combined_features) |
|
return output.view(-1, 3, resolution[0], resolution[1]) |
|
return combined_features |
|
|
|
|
|
class UnlimitedTaskManager: |
|
def __init__(self): |
|
self.task_queue = Queue() |
|
self.threads = [] |
|
|
|
def add_task(self, task, *args): |
|
"""Adds a task to the infinite task queue.""" |
|
self.task_queue.put((task, args)) |
|
|
|
def _worker(self): |
|
while True: |
|
task, args = self.task_queue.get() |
|
try: |
|
task(*args) |
|
except Exception as e: |
|
print(f"Task failed: {e}") |
|
finally: |
|
self.task_queue.task_done() |
|
|
|
def start_workers(self, num_workers=1000): |
|
"""Starts an infinite number of workers.""" |
|
for _ in range(num_workers): |
|
thread = Thread(target=self._worker, daemon=True) |
|
thread.start() |
|
self.threads.append(thread) |
|
|
|
def wait_for_completion(self): |
|
"""Waits for all tasks to finish.""" |
|
self.task_queue.join() |
|
|
|
|
|
class BoundlessArtificialPerfectIntelligence(nn.Module): |
|
def __init__(self, memory, reasoning, generator, task_manager): |
|
super(BoundlessArtificialPerfectIntelligence, self).__init__() |
|
self.memory = memory |
|
self.reasoning = reasoning |
|
self.generator = generator |
|
self.task_manager = task_manager |
|
|
|
def forward(self, mode, **kwargs): |
|
if mode == "reasoning": |
|
input_tensor = kwargs.get("input_tensor") |
|
max_depth = kwargs.get("max_depth") |
|
return self.reasoning(input_tensor, max_depth) |
|
|
|
elif mode == "memory_write": |
|
key = kwargs.get("key") |
|
value = kwargs.get("value") |
|
self.memory.write(key, value) |
|
return f"Stored key: {key}" |
|
|
|
elif mode == "memory_read": |
|
key = kwargs.get("key") |
|
return self.memory.read(key) |
|
|
|
elif mode == "generation": |
|
style_vector = kwargs.get("style_vector") |
|
content_vector = kwargs.get("content_vector") |
|
resolution = kwargs.get("resolution") |
|
return self.generator(style_vector, content_vector, resolution) |
|
|
|
elif mode == "task_add": |
|
task = kwargs.get("task") |
|
args = kwargs.get("args", []) |
|
self.task_manager.add_task(task, *args) |
|
return "Task added to the infinite task queue." |
|
|
|
return "Invalid Mode" |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
base_dim = 65536 |
|
|
|
|
|
infinite_memory = InfiniteMemory() |
|
infinite_memory.simulate_data(num_items=1e6) |
|
|
|
reasoning_net = InfiniteReasoningNet(base_dim) |
|
generator = InfiniteMultimodalGenerator(base_dim) |
|
task_manager = UnlimitedTaskManager() |
|
task_manager.start_workers(num_workers=1000) |
|
|
|
|
|
api = BoundlessArtificialPerfectIntelligence(infinite_memory, reasoning_net, generator, task_manager) |
|
|
|
|
|
print("Reasoning Output:", api("reasoning", input_tensor=torch.randn(1, base_dim), max_depth=100)) |
|
print("Memory Write:", api("memory_write", key="infinity", value="∞")) |
|
print("Memory Read:", api("memory_read", key="infinity")) |
|
print("32K Generation Output Shape:", api("generation", style_vector=torch.randn(1, base_dim), content_vector=torch.randn(1, base_dim), resolution=(32768, 32768)).shape) |
|
|
|
|
|
def example_task(x, y): |
|
print(f"Task executed: {x} + {y} = {x + y}") |
|
|
|
for i in range(10): |
|
api("task_add", task=example_task, args=(i, i * 2)) |
|
task_manager.wait_for_completion() |