|
--- |
|
license: cc-by-nc-sa-4.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cord-layoutlmv3 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-cord_vimal |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: cord-layoutlmv3 |
|
type: cord-layoutlmv3 |
|
config: cord |
|
split: test |
|
args: cord |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.717948717948718 |
|
- name: Recall |
|
type: recall |
|
value: 0.7368421052631579 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7272727272727273 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7333333333333333 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-cord_vimal |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.8321 |
|
- Precision: 0.7179 |
|
- Recall: 0.7368 |
|
- F1: 0.7273 |
|
- Accuracy: 0.7333 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 5 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 2500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 125.0 | 250 | 1.2027 | 0.7564 | 0.7763 | 0.7662 | 0.7481 | |
|
| 0.8449 | 250.0 | 500 | 1.3990 | 0.7089 | 0.7368 | 0.7226 | 0.7333 | |
|
| 0.8449 | 375.0 | 750 | 1.5343 | 0.7179 | 0.7368 | 0.7273 | 0.7333 | |
|
| 0.0296 | 500.0 | 1000 | 1.6144 | 0.75 | 0.75 | 0.75 | 0.7407 | |
|
| 0.0296 | 625.0 | 1250 | 1.6898 | 0.7179 | 0.7368 | 0.7273 | 0.7333 | |
|
| 0.0134 | 750.0 | 1500 | 1.7402 | 0.7179 | 0.7368 | 0.7273 | 0.7333 | |
|
| 0.0134 | 875.0 | 1750 | 1.7888 | 0.7179 | 0.7368 | 0.7273 | 0.7333 | |
|
| 0.0089 | 1000.0 | 2000 | 1.8041 | 0.7179 | 0.7368 | 0.7273 | 0.7333 | |
|
| 0.0089 | 1125.0 | 2250 | 1.8209 | 0.7179 | 0.7368 | 0.7273 | 0.7333 | |
|
| 0.0073 | 1250.0 | 2500 | 1.8321 | 0.7179 | 0.7368 | 0.7273 | 0.7333 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.2 |
|
|