swinv2-tiny-patch4-window8-256-finalterm

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2805
  • Accuracy: 0.9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3578 1.0 10 1.2444 0.475
1.1054 2.0 20 0.9180 0.6531
0.8485 3.0 30 0.6632 0.725
0.674 4.0 40 0.4736 0.7969
0.5968 5.0 50 0.4341 0.8125
0.508 6.0 60 0.5391 0.8187
0.4852 7.0 70 0.3906 0.8344
0.4354 8.0 80 0.3257 0.8656
0.4165 9.0 90 0.3478 0.8656
0.4385 10.0 100 0.3114 0.8781
0.4156 11.0 110 0.3461 0.8781
0.4055 12.0 120 0.3108 0.8844
0.4282 13.0 130 0.2916 0.8875
0.3546 14.0 140 0.2972 0.9
0.3608 15.0 150 0.3428 0.8688
0.369 16.0 160 0.2885 0.8969
0.3525 17.0 170 0.2861 0.9
0.338 18.0 180 0.2832 0.9062
0.3633 19.0 190 0.2797 0.9031
0.3712 20.0 200 0.2805 0.9

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
23
Safetensors
Model size
27.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for vintage-lavender619/swinv2-tiny-patch4-window8-256-finalterm

Finetuned
(78)
this model

Evaluation results