vintage-lavender619's picture
Model save
48cabee verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-finalterm
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9

swinv2-tiny-patch4-window8-256-finalterm

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2805
  • Accuracy: 0.9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3578 1.0 10 1.2444 0.475
1.1054 2.0 20 0.9180 0.6531
0.8485 3.0 30 0.6632 0.725
0.674 4.0 40 0.4736 0.7969
0.5968 5.0 50 0.4341 0.8125
0.508 6.0 60 0.5391 0.8187
0.4852 7.0 70 0.3906 0.8344
0.4354 8.0 80 0.3257 0.8656
0.4165 9.0 90 0.3478 0.8656
0.4385 10.0 100 0.3114 0.8781
0.4156 11.0 110 0.3461 0.8781
0.4055 12.0 120 0.3108 0.8844
0.4282 13.0 130 0.2916 0.8875
0.3546 14.0 140 0.2972 0.9
0.3608 15.0 150 0.3428 0.8688
0.369 16.0 160 0.2885 0.8969
0.3525 17.0 170 0.2861 0.9
0.338 18.0 180 0.2832 0.9062
0.3633 19.0 190 0.2797 0.9031
0.3712 20.0 200 0.2805 0.9

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1