vintage-lavender619's picture
Model save
5e3b302 verified
|
raw
history blame
3.05 kB
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-finalterm
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.89375

swinv2-tiny-patch4-window8-256-finalterm

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3096
  • Accuracy: 0.8938

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3728 1.0 10 1.2644 0.5156
1.1308 2.0 20 0.8816 0.625
0.8721 3.0 30 0.6829 0.7063
0.6919 4.0 40 0.5298 0.8063
0.5876 5.0 50 0.4100 0.8688
0.5504 6.0 60 0.4153 0.8531
0.459 7.0 70 0.3828 0.8594
0.4501 8.0 80 0.3941 0.8625
0.4312 9.0 90 0.3650 0.8719
0.4119 10.0 100 0.3515 0.875
0.4014 11.0 110 0.3110 0.8969
0.3896 12.0 120 0.3030 0.9031
0.3822 13.0 130 0.3473 0.8812
0.3985 14.0 140 0.3288 0.8875
0.3826 15.0 150 0.2925 0.9
0.3716 16.0 160 0.3619 0.875
0.365 17.0 170 0.2941 0.9
0.3379 18.0 180 0.3239 0.8844
0.3365 19.0 190 0.3260 0.8906
0.3429 20.0 200 0.3096 0.8938

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1