tags: | |
- hojjatk/mnist-dataset | |
- handwriting-recognition | |
- classification | |
- deep-learning | |
metrics: | |
accuracy: '0.96' | |
precision: '0.96' | |
recall: '0.96' | |
dataset: | |
name: hojjatk/mnist-dataset | |
type: image | |
license: mit | |
downloads: | |
count: 0 | |
# Handwriting Recognition Model | |
This is a trained model for handwriting recognition using **hojjatk/mnist-dataset** dataset. | |
## Usage | |
```python | |
model = torch.load("mnsit_digit_nn") | |
model.eval() | |
``` | |
## Training Param: | |
epochs = 1 | |
batch_size = 64 | |
learning_rate = 0.001 | |
## Model Architectue: | |
['(conv1): Conv2d(1, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))', '(conv2): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))', '(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)', '(fc1): Linear(in_features=1568, out_features=128, bias=True)', '(fc2): Linear(in_features=128, out_features=10, bias=True)'] | |
## Evaluation Results | |
- Accuracy: 0.96 | |
- Precision: 0.96 | |
- Recall: 0.96 | |