metadata
license: apache-2.0
language:
- ja
tags:
- automatic-speech-recognition
- robust-speech-event
- common-voice
- ja
model-index:
- name: wav2vec2-xls-r-1b
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7.0
type: mozilla-foundation/common_voice_7_0
args: ja
metrics:
- name: Test WER (with LM)
type: wer
value: 7.98
- name: Test CER (with LM)
type: cer
value: 3.42
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8.0
type: mozilla-foundation/common_voice_8_0
args: ja
metrics:
- name: Test WER (with LM)
type: wer
value: 7.88
- name: Test CER (with LM)
type: cer
value: 3.35
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: ja
metrics:
- name: Test WER (with LM)
type: wer
value: 28.07
- name: Test CER (with LM)
type: cer
value: 16.27
Model description
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on my collection of Public Japanese Voice datasets for research Common Voice 7.0, JUST (Japanese speech corpus of Saruwatari-lab., University of Tokyo), JSSS (Japanese speech corpus for summarization and simplification), CSS10 (A collection of single speaker speech datasets). You can find in preprocessing dataset in here VUMICHIEN/COMMON_VOICE_LARGE_JSUT_JSSS_CSS10.
Benchmark WER result:
COMMON VOICE 7.0 | COMMON VOICE 8.0 | |
---|---|---|
without LM | 10.96 | 10.91 |
with 4-grams LM | 7.98 | 7.88 |
Benchmark CER result:
COMMON VOICE 7.0 | COMMON VOICE 8.0 | |
---|---|---|
without LM | 4.28 | 4.22 |
with 4-grams LM | 3.42 | 3.35 |
Evaluation
Please use the eval.py file to run the evaluation:
python eval.py --model_id vumichien/wav2vec2-xls-r-1b-japanese --dataset mozilla-foundation/common_voice_7_0 --config ja --split test --log_outputs
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
2.2896 | 3.37 | 1500 | 0.4748 | 0.4013 | 0.1767 |
1.1608 | 6.74 | 3000 | 0.3350 | 0.3159 | 0.1456 |
1.1042 | 10.11 | 4500 | 0.3119 | 0.2971 | 0.1400 |
1.0494 | 13.48 | 6000 | 0.2974 | 0.2867 | 0.1353 |
1.0061 | 16.85 | 7500 | 0.2802 | 0.2746 | 0.1300 |
0.9629 | 20.22 | 9000 | 0.2844 | 0.2776 | 0.1326 |
0.9267 | 23.59 | 10500 | 0.2577 | 0.2603 | 0.1255 |
0.8984 | 26.96 | 12000 | 0.2508 | 0.2531 | 0.1226 |
0.8729 | 30.34 | 13500 | 0.2629 | 0.2606 | 0.1254 |
0.8546 | 33.71 | 15000 | 0.2402 | 0.2447 | 0.1193 |
0.8304 | 37.08 | 16500 | 0.2532 | 0.2472 | 0.1209 |
0.8075 | 40.45 | 18000 | 0.2439 | 0.2469 | 0.1198 |
0.7827 | 43.82 | 19500 | 0.2387 | 0.2372 | 0.1167 |
0.7627 | 47.19 | 21000 | 0.2344 | 0.2331 | 0.1147 |
0.7402 | 50.56 | 22500 | 0.2314 | 0.2299 | 0.1135 |
0.718 | 53.93 | 24000 | 0.2257 | 0.2267 | 0.1114 |
0.7016 | 57.3 | 25500 | 0.2204 | 0.2184 | 0.1089 |
0.6804 | 60.67 | 27000 | 0.2227 | 0.2181 | 0.1085 |
0.6625 | 64.04 | 28500 | 0.2138 | 0.2112 | 0.1058 |
0.6465 | 67.42 | 30000 | 0.2141 | 0.2081 | 0.1044 |
0.6238 | 70.79 | 31500 | 0.2172 | 0.2082 | 0.1050 |
0.6062 | 74.16 | 33000 | 0.2174 | 0.2058 | 0.1043 |
0.588 | 77.53 | 34500 | 0.2156 | 0.2034 | 0.1027 |
0.5722 | 80.9 | 36000 | 0.2162 | 0.2032 | 0.1029 |
0.5585 | 84.27 | 37500 | 0.2156 | 0.2022 | 0.1021 |
0.5456 | 87.64 | 39000 | 0.2126 | 0.1993 | 0.1009 |
0.5325 | 91.01 | 40500 | 0.2121 | 0.1966 | 0.1003 |
0.5229 | 94.38 | 42000 | 0.2104 | 0.1941 | 0.0991 |
0.5134 | 97.75 | 43500 | 0.2108 | 0.1948 | 0.0992 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0