|
import torch |
|
from torch import no_grad, FloatTensor |
|
from tqdm import tqdm |
|
from typing import Protocol, Optional, Dict, Any, TypedDict, NamedTuple, Union, List |
|
import math |
|
from itertools import tee |
|
|
|
def pairwise(iterable): |
|
"s -> (s0, s1), (s1, s2), (s2, s3), ..." |
|
a, b = tee(iterable) |
|
next(b, None) |
|
return zip(a, b) |
|
|
|
class DenoiserModel(Protocol): |
|
def __call__(self, x: FloatTensor, t: FloatTensor, *args, **kwargs) -> FloatTensor: ... |
|
|
|
class RefinedExpCallbackPayload(TypedDict): |
|
x: FloatTensor |
|
i: int |
|
sigma: FloatTensor |
|
sigma_hat: FloatTensor |
|
|
|
class RefinedExpCallback(Protocol): |
|
def __call__(self, payload: RefinedExpCallbackPayload) -> None: ... |
|
|
|
class NoiseSampler(Protocol): |
|
def __call__(self, x: FloatTensor) -> FloatTensor: ... |
|
|
|
class StepOutput(NamedTuple): |
|
x_next: FloatTensor |
|
denoised: FloatTensor |
|
denoised2: FloatTensor |
|
|
|
def _gamma( |
|
n: int, |
|
) -> int: |
|
""" |
|
https://en.wikipedia.org/wiki/Gamma_function |
|
for every positive integer n, |
|
Γ(n) = (n-1)! |
|
""" |
|
return math.factorial(n-1) |
|
|
|
def _incomplete_gamma( |
|
s: int, |
|
x: float, |
|
gamma_s: Optional[int] = None |
|
) -> float: |
|
""" |
|
https://en.wikipedia.org/wiki/Incomplete_gamma_function#Special_values |
|
if s is a positive integer, |
|
Γ(s, x) = (s-1)!*∑{k=0..s-1}(x^k/k!) |
|
""" |
|
if gamma_s is None: |
|
gamma_s = _gamma(s) |
|
|
|
sum_: float = 0 |
|
|
|
for k in range(s): |
|
numerator: float = x**k |
|
denom: int = math.factorial(k) |
|
quotient: float = numerator/denom |
|
sum_ += quotient |
|
incomplete_gamma_: float = sum_ * math.exp(-x) * gamma_s |
|
return incomplete_gamma_ |
|
|
|
|
|
def _phi_1(neg_h: FloatTensor): |
|
return torch.nan_to_num(torch.expm1(neg_h) / neg_h, nan=1.0) |
|
|
|
|
|
def _phi_2(neg_h: FloatTensor): |
|
return torch.nan_to_num((torch.expm1(neg_h) - neg_h) / neg_h**2, nan=0.5) |
|
|
|
|
|
def _phi_3(neg_h: FloatTensor): |
|
return torch.nan_to_num((torch.expm1(neg_h) - neg_h - neg_h**2 / 2) / neg_h**3, nan=1 / 6) |
|
|
|
def _phi( |
|
neg_h: float, |
|
j: int, |
|
): |
|
""" |
|
For j={1,2,3}: you could alternatively use Kat's phi_1, phi_2, phi_3 which perform fewer steps |
|
|
|
Lemma 1 |
|
https://arxiv.org/abs/2308.02157 |
|
ϕj(-h) = 1/h^j*∫{0..h}(e^(τ-h)*(τ^(j-1))/((j-1)!)dτ) |
|
|
|
https://www.wolframalpha.com/input?i=integrate+e%5E%28%CF%84-h%29*%28%CF%84%5E%28j-1%29%2F%28j-1%29%21%29d%CF%84 |
|
= 1/h^j*[(e^(-h)*(-τ)^(-j)*τ(j))/((j-1)!)]{0..h} |
|
https://www.wolframalpha.com/input?i=integrate+e%5E%28%CF%84-h%29*%28%CF%84%5E%28j-1%29%2F%28j-1%29%21%29d%CF%84+between+0+and+h |
|
= 1/h^j*((e^(-h)*(-h)^(-j)*h^j*(Γ(j)-Γ(j,-h)))/(j-1)!) |
|
= (e^(-h)*(-h)^(-j)*h^j*(Γ(j)-Γ(j,-h))/((j-1)!*h^j) |
|
= (e^(-h)*(-h)^(-j)*(Γ(j)-Γ(j,-h))/(j-1)! |
|
= (e^(-h)*(-h)^(-j)*(Γ(j)-Γ(j,-h))/Γ(j) |
|
= (e^(-h)*(-h)^(-j)*(1-Γ(j,-h)/Γ(j)) |
|
|
|
requires j>0 |
|
""" |
|
assert j > 0 |
|
gamma_: float = _gamma(j) |
|
incomp_gamma_: float = _incomplete_gamma(j, neg_h, gamma_s=gamma_) |
|
|
|
phi_: float = math.exp(neg_h) * neg_h**-j * (1-incomp_gamma_/gamma_) |
|
|
|
return phi_ |
|
|
|
class RESDECoeffsSecondOrder(NamedTuple): |
|
a2_1: float |
|
b1: float |
|
b2: float |
|
|
|
def _de_second_order( |
|
h: float, |
|
c2: float, |
|
simple_phi_calc = False, |
|
) -> RESDECoeffsSecondOrder: |
|
""" |
|
Table 3 |
|
https://arxiv.org/abs/2308.02157 |
|
ϕi,j := ϕi,j(-h) = ϕi(-cj*h) |
|
a2_1 = c2ϕ1,2 |
|
= c2ϕ1(-c2*h) |
|
b1 = ϕ1 - ϕ2/c2 |
|
""" |
|
if simple_phi_calc: |
|
|
|
a2_1: float = c2 * _phi_1(-c2*h) |
|
phi1: float = _phi_1(-h) |
|
phi2: float = _phi_2(-h) |
|
else: |
|
|
|
|
|
a2_1: float = c2 * _phi(j=1, neg_h=-c2*h) |
|
phi1: float = _phi(j=1, neg_h=-h) |
|
phi2: float = _phi(j=2, neg_h=-h) |
|
phi2_c2: float = phi2/c2 |
|
b1: float = phi1 - phi2_c2 |
|
b2: float = phi2_c2 |
|
return RESDECoeffsSecondOrder( |
|
a2_1=a2_1, |
|
b1=b1, |
|
b2=b2, |
|
) |
|
|
|
def _refined_exp_sosu_step( |
|
model: DenoiserModel, |
|
x: FloatTensor, |
|
sigma: FloatTensor, |
|
sigma_next: FloatTensor, |
|
c2 = 0.5, |
|
extra_args: Dict[str, Any] = {}, |
|
pbar: Optional[tqdm] = None, |
|
simple_phi_calc = False, |
|
) -> StepOutput: |
|
""" |
|
Algorithm 1 "RES Second order Single Update Step with c2" |
|
https://arxiv.org/abs/2308.02157 |
|
|
|
Parameters: |
|
model (`DenoiserModel`): a k-diffusion wrapped denoiser model (e.g. a subclass of DiscreteEpsDDPMDenoiser) |
|
x (`FloatTensor`): noised latents (or RGB I suppose), e.g. torch.randn((B, C, H, W)) * sigma[0] |
|
sigma (`FloatTensor`): timestep to denoise |
|
sigma_next (`FloatTensor`): timestep+1 to denoise |
|
c2 (`float`, *optional*, defaults to .5): partial step size for solving ODE. .5 = midpoint method |
|
extra_args (`Dict[str, Any]`, *optional*, defaults to `{}`): kwargs to pass to `model#__call__()` |
|
pbar (`tqdm`, *optional*, defaults to `None`): progress bar to update after each model call |
|
simple_phi_calc (`bool`, *optional*, defaults to `True`): True = calculate phi_i,j(-h) via simplified formulae specific to j={1,2}. False = Use general solution that works for any j. Mathematically equivalent, but could be numeric differences. |
|
""" |
|
lam_next, lam = (s.log().neg() for s in (sigma_next, sigma)) |
|
|
|
|
|
|
|
|
|
h: float = lam_next - lam |
|
a2_1, b1, b2 = _de_second_order(h=h, c2=c2, simple_phi_calc=simple_phi_calc) |
|
|
|
denoised: FloatTensor = model(x, sigma, **extra_args) |
|
if pbar is not None: |
|
pbar.update(0.5) |
|
|
|
c2_h: float = c2*h |
|
|
|
x_2: FloatTensor = math.exp(-c2_h)*x + a2_1*h*denoised |
|
lam_2: float = lam + c2_h |
|
sigma_2: float = lam_2.neg().exp() |
|
|
|
denoised2: FloatTensor = model(x_2, sigma_2, **extra_args) |
|
if pbar is not None: |
|
pbar.update(0.5) |
|
|
|
x_next: FloatTensor = math.exp(-h)*x + h*(b1*denoised + b2*denoised2) |
|
|
|
return StepOutput( |
|
x_next=x_next, |
|
denoised=denoised, |
|
denoised2=denoised2, |
|
) |
|
|
|
|
|
@no_grad() |
|
def sample_refined_exp_s( |
|
model: FloatTensor, |
|
x: FloatTensor, |
|
sigmas: FloatTensor, |
|
denoise_to_zero: bool = True, |
|
extra_args: Dict[str, Any] = {}, |
|
callback: Optional[RefinedExpCallback] = None, |
|
disable: Optional[bool] = None, |
|
ita: FloatTensor = torch.zeros((1,)), |
|
c2 = .5, |
|
noise_sampler: NoiseSampler = torch.randn_like, |
|
simple_phi_calc = True, |
|
): |
|
""" |
|
Refined Exponential Solver (S). |
|
Algorithm 2 "RES Single-Step Sampler" with Algorithm 1 second-order step |
|
https://arxiv.org/abs/2308.02157 |
|
|
|
Parameters: |
|
model (`DenoiserModel`): a k-diffusion wrapped denoiser model (e.g. a subclass of DiscreteEpsDDPMDenoiser) |
|
x (`FloatTensor`): noised latents (or RGB I suppose), e.g. torch.randn((B, C, H, W)) * sigma[0] |
|
sigmas (`FloatTensor`): sigmas (ideally an exponential schedule!) e.g. get_sigmas_exponential(n=25, sigma_min=model.sigma_min, sigma_max=model.sigma_max) |
|
denoise_to_zero (`bool`, *optional*, defaults to `True`): whether to finish with a first-order step down to 0 (rather than stopping at sigma_min). True = fully denoise image. False = match Algorithm 2 in paper |
|
extra_args (`Dict[str, Any]`, *optional*, defaults to `{}`): kwargs to pass to `model#__call__()` |
|
callback (`RefinedExpCallback`, *optional*, defaults to `None`): you can supply this callback to see the intermediate denoising results, e.g. to preview each step of the denoising process |
|
disable (`bool`, *optional*, defaults to `False`): whether to hide `tqdm`'s progress bar animation from being printed |
|
ita (`FloatTensor`, *optional*, defaults to 0.): degree of stochasticity, η, for each timestep. tensor shape must be broadcastable to 1-dimensional tensor with length `len(sigmas) if denoise_to_zero else len(sigmas)-1`. each element should be from 0 to 1. |
|
c2 (`float`, *optional*, defaults to .5): partial step size for solving ODE. .5 = midpoint method |
|
noise_sampler (`NoiseSampler`, *optional*, defaults to `torch.randn_like`): method used for adding noise |
|
simple_phi_calc (`bool`, *optional*, defaults to `True`): True = calculate phi_i,j(-h) via simplified formulae specific to j={1,2}. False = Use general solution that works for any j. Mathematically equivalent, but could be numeric differences. |
|
""" |
|
|
|
ita = ita.to(x.device) |
|
with tqdm(disable=disable, total=len(sigmas)-(1 if denoise_to_zero else 2)) as pbar: |
|
for i, (sigma, sigma_next) in enumerate(pairwise(sigmas[:-1].split(1))): |
|
eps: FloatTensor = noise_sampler(x) |
|
sigma_hat = sigma * (1 + ita) |
|
x_hat = x + (sigma_hat ** 2 - sigma ** 2) ** .5 * eps |
|
x_next, denoised, denoised2 = _refined_exp_sosu_step( |
|
model, |
|
x_hat, |
|
sigma_hat, |
|
sigma_next, |
|
c2=c2, |
|
extra_args=extra_args, |
|
pbar=pbar, |
|
simple_phi_calc=simple_phi_calc, |
|
) |
|
if callback is not None: |
|
payload = RefinedExpCallbackPayload( |
|
x=x, |
|
i=i, |
|
sigma=sigma, |
|
sigma_hat=sigma_hat, |
|
denoised=denoised, |
|
denoised2=denoised2, |
|
) |
|
callback(payload) |
|
x = x_next |
|
if denoise_to_zero: |
|
eps: FloatTensor = noise_sampler(x) |
|
sigma_hat = sigma * (1 + ita) |
|
x_hat = x + (sigma_hat ** 2 - sigma ** 2) ** .5 * eps |
|
x_next: FloatTensor = model(x_hat, sigma.to(x_hat.device)) |
|
pbar.update() |
|
x = x_next |
|
return x |