azkavyro's picture
Added all files including vyro_workflows
6fecfbe
import torch
from torch import no_grad, FloatTensor
from tqdm import tqdm
from typing import Protocol, Optional, Dict, Any, TypedDict, NamedTuple, Union, List
import math
from itertools import tee
def pairwise(iterable):
"s -> (s0, s1), (s1, s2), (s2, s3), ..."
a, b = tee(iterable)
next(b, None)
return zip(a, b)
class DenoiserModel(Protocol):
def __call__(self, x: FloatTensor, t: FloatTensor, *args, **kwargs) -> FloatTensor: ...
class RefinedExpCallbackPayload(TypedDict):
x: FloatTensor
i: int
sigma: FloatTensor
sigma_hat: FloatTensor
class RefinedExpCallback(Protocol):
def __call__(self, payload: RefinedExpCallbackPayload) -> None: ...
class NoiseSampler(Protocol):
def __call__(self, x: FloatTensor) -> FloatTensor: ...
class StepOutput(NamedTuple):
x_next: FloatTensor
denoised: FloatTensor
denoised2: FloatTensor
def _gamma(
n: int,
) -> int:
"""
https://en.wikipedia.org/wiki/Gamma_function
for every positive integer n,
Γ(n) = (n-1)!
"""
return math.factorial(n-1)
def _incomplete_gamma(
s: int,
x: float,
gamma_s: Optional[int] = None
) -> float:
"""
https://en.wikipedia.org/wiki/Incomplete_gamma_function#Special_values
if s is a positive integer,
Γ(s, x) = (s-1)!*∑{k=0..s-1}(x^k/k!)
"""
if gamma_s is None:
gamma_s = _gamma(s)
sum_: float = 0
# {k=0..s-1} inclusive
for k in range(s):
numerator: float = x**k
denom: int = math.factorial(k)
quotient: float = numerator/denom
sum_ += quotient
incomplete_gamma_: float = sum_ * math.exp(-x) * gamma_s
return incomplete_gamma_
# by Katherine Crowson
def _phi_1(neg_h: FloatTensor):
return torch.nan_to_num(torch.expm1(neg_h) / neg_h, nan=1.0)
# by Katherine Crowson
def _phi_2(neg_h: FloatTensor):
return torch.nan_to_num((torch.expm1(neg_h) - neg_h) / neg_h**2, nan=0.5)
# by Katherine Crowson
def _phi_3(neg_h: FloatTensor):
return torch.nan_to_num((torch.expm1(neg_h) - neg_h - neg_h**2 / 2) / neg_h**3, nan=1 / 6)
def _phi(
neg_h: float,
j: int,
):
"""
For j={1,2,3}: you could alternatively use Kat's phi_1, phi_2, phi_3 which perform fewer steps
Lemma 1
https://arxiv.org/abs/2308.02157
ϕj(-h) = 1/h^j*∫{0..h}(e^(τ-h)*(τ^(j-1))/((j-1)!)dτ)
https://www.wolframalpha.com/input?i=integrate+e%5E%28%CF%84-h%29*%28%CF%84%5E%28j-1%29%2F%28j-1%29%21%29d%CF%84
= 1/h^j*[(e^(-h)*(-τ)^(-j)*τ(j))/((j-1)!)]{0..h}
https://www.wolframalpha.com/input?i=integrate+e%5E%28%CF%84-h%29*%28%CF%84%5E%28j-1%29%2F%28j-1%29%21%29d%CF%84+between+0+and+h
= 1/h^j*((e^(-h)*(-h)^(-j)*h^j*(Γ(j)-Γ(j,-h)))/(j-1)!)
= (e^(-h)*(-h)^(-j)*h^j*(Γ(j)-Γ(j,-h))/((j-1)!*h^j)
= (e^(-h)*(-h)^(-j)*(Γ(j)-Γ(j,-h))/(j-1)!
= (e^(-h)*(-h)^(-j)*(Γ(j)-Γ(j,-h))/Γ(j)
= (e^(-h)*(-h)^(-j)*(1-Γ(j,-h)/Γ(j))
requires j>0
"""
assert j > 0
gamma_: float = _gamma(j)
incomp_gamma_: float = _incomplete_gamma(j, neg_h, gamma_s=gamma_)
phi_: float = math.exp(neg_h) * neg_h**-j * (1-incomp_gamma_/gamma_)
return phi_
class RESDECoeffsSecondOrder(NamedTuple):
a2_1: float
b1: float
b2: float
def _de_second_order(
h: float,
c2: float,
simple_phi_calc = False,
) -> RESDECoeffsSecondOrder:
"""
Table 3
https://arxiv.org/abs/2308.02157
ϕi,j := ϕi,j(-h) = ϕi(-cj*h)
a2_1 = c2ϕ1,2
= c2ϕ1(-c2*h)
b1 = ϕ1 - ϕ2/c2
"""
if simple_phi_calc:
# Kat computed simpler expressions for phi for cases j={1,2,3}
a2_1: float = c2 * _phi_1(-c2*h)
phi1: float = _phi_1(-h)
phi2: float = _phi_2(-h)
else:
# I computed general solution instead.
# they're close, but there are slight differences. not sure which would be more prone to numerical error.
a2_1: float = c2 * _phi(j=1, neg_h=-c2*h)
phi1: float = _phi(j=1, neg_h=-h)
phi2: float = _phi(j=2, neg_h=-h)
phi2_c2: float = phi2/c2
b1: float = phi1 - phi2_c2
b2: float = phi2_c2
return RESDECoeffsSecondOrder(
a2_1=a2_1,
b1=b1,
b2=b2,
)
def _refined_exp_sosu_step(
model: DenoiserModel,
x: FloatTensor,
sigma: FloatTensor,
sigma_next: FloatTensor,
c2 = 0.5,
extra_args: Dict[str, Any] = {},
pbar: Optional[tqdm] = None,
simple_phi_calc = False,
) -> StepOutput:
"""
Algorithm 1 "RES Second order Single Update Step with c2"
https://arxiv.org/abs/2308.02157
Parameters:
model (`DenoiserModel`): a k-diffusion wrapped denoiser model (e.g. a subclass of DiscreteEpsDDPMDenoiser)
x (`FloatTensor`): noised latents (or RGB I suppose), e.g. torch.randn((B, C, H, W)) * sigma[0]
sigma (`FloatTensor`): timestep to denoise
sigma_next (`FloatTensor`): timestep+1 to denoise
c2 (`float`, *optional*, defaults to .5): partial step size for solving ODE. .5 = midpoint method
extra_args (`Dict[str, Any]`, *optional*, defaults to `{}`): kwargs to pass to `model#__call__()`
pbar (`tqdm`, *optional*, defaults to `None`): progress bar to update after each model call
simple_phi_calc (`bool`, *optional*, defaults to `True`): True = calculate phi_i,j(-h) via simplified formulae specific to j={1,2}. False = Use general solution that works for any j. Mathematically equivalent, but could be numeric differences.
"""
lam_next, lam = (s.log().neg() for s in (sigma_next, sigma))
# type hints aren't strictly true regarding float vs FloatTensor.
# everything gets promoted to `FloatTensor` after interacting with `sigma: FloatTensor`.
# I will use float to indicate any variables which are scalars.
h: float = lam_next - lam
a2_1, b1, b2 = _de_second_order(h=h, c2=c2, simple_phi_calc=simple_phi_calc)
denoised: FloatTensor = model(x, sigma, **extra_args)
if pbar is not None:
pbar.update(0.5)
c2_h: float = c2*h
x_2: FloatTensor = math.exp(-c2_h)*x + a2_1*h*denoised
lam_2: float = lam + c2_h
sigma_2: float = lam_2.neg().exp()
denoised2: FloatTensor = model(x_2, sigma_2, **extra_args)
if pbar is not None:
pbar.update(0.5)
x_next: FloatTensor = math.exp(-h)*x + h*(b1*denoised + b2*denoised2)
return StepOutput(
x_next=x_next,
denoised=denoised,
denoised2=denoised2,
)
@no_grad()
def sample_refined_exp_s(
model: FloatTensor,
x: FloatTensor,
sigmas: FloatTensor,
denoise_to_zero: bool = True,
extra_args: Dict[str, Any] = {},
callback: Optional[RefinedExpCallback] = None,
disable: Optional[bool] = None,
ita: FloatTensor = torch.zeros((1,)),
c2 = .5,
noise_sampler: NoiseSampler = torch.randn_like,
simple_phi_calc = True,
):
"""
Refined Exponential Solver (S).
Algorithm 2 "RES Single-Step Sampler" with Algorithm 1 second-order step
https://arxiv.org/abs/2308.02157
Parameters:
model (`DenoiserModel`): a k-diffusion wrapped denoiser model (e.g. a subclass of DiscreteEpsDDPMDenoiser)
x (`FloatTensor`): noised latents (or RGB I suppose), e.g. torch.randn((B, C, H, W)) * sigma[0]
sigmas (`FloatTensor`): sigmas (ideally an exponential schedule!) e.g. get_sigmas_exponential(n=25, sigma_min=model.sigma_min, sigma_max=model.sigma_max)
denoise_to_zero (`bool`, *optional*, defaults to `True`): whether to finish with a first-order step down to 0 (rather than stopping at sigma_min). True = fully denoise image. False = match Algorithm 2 in paper
extra_args (`Dict[str, Any]`, *optional*, defaults to `{}`): kwargs to pass to `model#__call__()`
callback (`RefinedExpCallback`, *optional*, defaults to `None`): you can supply this callback to see the intermediate denoising results, e.g. to preview each step of the denoising process
disable (`bool`, *optional*, defaults to `False`): whether to hide `tqdm`'s progress bar animation from being printed
ita (`FloatTensor`, *optional*, defaults to 0.): degree of stochasticity, η, for each timestep. tensor shape must be broadcastable to 1-dimensional tensor with length `len(sigmas) if denoise_to_zero else len(sigmas)-1`. each element should be from 0 to 1.
c2 (`float`, *optional*, defaults to .5): partial step size for solving ODE. .5 = midpoint method
noise_sampler (`NoiseSampler`, *optional*, defaults to `torch.randn_like`): method used for adding noise
simple_phi_calc (`bool`, *optional*, defaults to `True`): True = calculate phi_i,j(-h) via simplified formulae specific to j={1,2}. False = Use general solution that works for any j. Mathematically equivalent, but could be numeric differences.
"""
# assert sigmas[-1] == 0
ita = ita.to(x.device)
with tqdm(disable=disable, total=len(sigmas)-(1 if denoise_to_zero else 2)) as pbar:
for i, (sigma, sigma_next) in enumerate(pairwise(sigmas[:-1].split(1))):
eps: FloatTensor = noise_sampler(x)
sigma_hat = sigma * (1 + ita)
x_hat = x + (sigma_hat ** 2 - sigma ** 2) ** .5 * eps
x_next, denoised, denoised2 = _refined_exp_sosu_step(
model,
x_hat,
sigma_hat,
sigma_next,
c2=c2,
extra_args=extra_args,
pbar=pbar,
simple_phi_calc=simple_phi_calc,
)
if callback is not None:
payload = RefinedExpCallbackPayload(
x=x,
i=i,
sigma=sigma,
sigma_hat=sigma_hat,
denoised=denoised,
denoised2=denoised2,
)
callback(payload)
x = x_next
if denoise_to_zero:
eps: FloatTensor = noise_sampler(x)
sigma_hat = sigma * (1 + ita)
x_hat = x + (sigma_hat ** 2 - sigma ** 2) ** .5 * eps
x_next: FloatTensor = model(x_hat, sigma.to(x_hat.device))
pbar.update()
x = x_next
return x