See axolotl config
axolotl version: 0.9.1.post1
base_model: meta-llama/Llama-3.1-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
gradient_accumulation_steps: 2
micro_batch_size: 8
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0001
load_in_8bit: true
load_in_4bit: false
adapter: lora
lora_model_dir: null
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- q_proj
- v_proj
- k_proj
datasets:
- path: /workspace/FinLoRA/data/train/finlora_sentiment_train.jsonl
type:
system_prompt: ''
field_system: system
field_instruction: context
field_output: target
format: '[INST] {instruction} [/INST]'
no_input_format: '[INST] {instruction} [/INST]'
dataset_prepared_path: null
val_set_size: 0.02
output_dir: /workspace/FinLoRA/lora/axolotl-output/sentiment_llama_3_1_8b_8bits_r8_rslora
peft_use_dora: false
peft_use_rslora: true
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: false
wandb_project: finlora_models
wandb_entity: null
wandb_watch: gradients
wandb_name: sentiment_llama_3_1_8b_8bits_r8_rslora
wandb_log_model: 'false'
bf16: auto
tf32: false
gradient_checkpointing: true
resume_from_checkpoint: null
logging_steps: 500
flash_attention: false
deepspeed: deepspeed_configs/zero1.json
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
pad_token: <|end_of_text|>
chat_template: llama3
workspace/FinLoRA/lora/axolotl-output/sentiment_llama_3_1_8b_8bits_r8_rslora
This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the /workspace/FinLoRA/data/train/finlora_sentiment_train.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 0.2509
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 2
- total_train_batch_size: 48
- total_eval_batch_size: 24
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0007 | 1 | 3.6225 |
No log | 0.2502 | 372 | 0.2253 |
0.2875 | 0.5003 | 744 | 0.2231 |
0.1383 | 0.7505 | 1116 | 0.2171 |
0.1383 | 1.0007 | 1488 | 0.2199 |
0.1134 | 1.2508 | 1860 | 0.2214 |
0.0907 | 1.5010 | 2232 | 0.2217 |
0.0848 | 1.7512 | 2604 | 0.2090 |
0.0848 | 2.0013 | 2976 | 0.2118 |
0.0803 | 2.2515 | 3348 | 0.2197 |
0.0626 | 2.5017 | 3720 | 0.2119 |
0.0628 | 2.7518 | 4092 | 0.2203 |
0.0628 | 3.0020 | 4464 | 0.2186 |
0.0614 | 3.2522 | 4836 | 0.2530 |
0.0496 | 3.5024 | 5208 | 0.2486 |
0.0489 | 3.7525 | 5580 | 0.2509 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0.dev20250319+cu128
- Datasets 3.5.1
- Tokenizers 0.21.1