Edit model card

BenchmarkEngineering-F2-7B-slerp

This merge seeks to further improve on the original BenchmarkEngineering by integrating the Westlake-7B-v2 model. It does boost the Winogrande score but at the cost of the other benchmarks.

BenchmarkEngineering-F2-7B-slerp is a merge of the following models using LazyMergekit:

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 75.77
AI2 Reasoning Challenge (25-Shot) 73.46
HellaSwag (10-Shot) 88.88
MMLU (5-Shot) 64.50
TruthfulQA (0-shot) 72.37
Winogrande (5-shot) 86.11
GSM8k (5-shot) 69.29

🧩 Configuration

slices:
  - sources:
      - model: weezywitasneezy/BenchmarkEngineering-7B-slerp
        layer_range: [0, 32]
      - model: senseable/WestLake-7B-v2
        layer_range: [0, 32]
merge_method: slerp
base_model: weezywitasneezy/BenchmarkEngineering-7B-slerp
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "weezywitasneezy/BenchmarkEngineering-F2-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
18
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for weezywitasneezy/BenchmarkEngineering-F2-7B-slerp

Evaluation results