metadata
license: cc-by-nc-4.0
tags:
- merge
- mergekit
- lazymergekit
- weezywitasneezy/BenchmarkEngineering-7B-slerp
- senseable/WestLake-7B-v2
base_model:
- weezywitasneezy/BenchmarkEngineering-7B-slerp
- senseable/WestLake-7B-v2
model-index:
- name: BenchmarkEngineering-F2-7B-slerp
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 73.46
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/BenchmarkEngineering-F2-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.88
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/BenchmarkEngineering-F2-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.5
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/BenchmarkEngineering-F2-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 72.37
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/BenchmarkEngineering-F2-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 86.11
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/BenchmarkEngineering-F2-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.29
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/BenchmarkEngineering-F2-7B-slerp
name: Open LLM Leaderboard
BenchmarkEngineering-F2-7B-slerp
This merge seeks to further improve on the original BenchmarkEngineering by integrating the Westlake-7B-v2 model. It does boost the Winogrande score but at the cost of the other benchmarks.
BenchmarkEngineering-F2-7B-slerp is a merge of the following models using LazyMergekit:
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 75.77 |
AI2 Reasoning Challenge (25-Shot) | 73.46 |
HellaSwag (10-Shot) | 88.88 |
MMLU (5-Shot) | 64.50 |
TruthfulQA (0-shot) | 72.37 |
Winogrande (5-shot) | 86.11 |
GSM8k (5-shot) | 69.29 |
🧩 Configuration
slices:
- sources:
- model: weezywitasneezy/BenchmarkEngineering-7B-slerp
layer_range: [0, 32]
- model: senseable/WestLake-7B-v2
layer_range: [0, 32]
merge_method: slerp
base_model: weezywitasneezy/BenchmarkEngineering-7B-slerp
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "weezywitasneezy/BenchmarkEngineering-F2-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])