perovskite-asr / predict_perovskite_ASR.py
willengler-uc's picture
Upload 11 files
f935bff verified
import os
import pandas as pd
import numpy as np
import joblib
import dill
from mastml.feature_generators import ElementalFeatureGenerator, OneHotGroupGenerator
def get_barrier(df_test):
d = 'model_perovskite_ASR/Barrier_model'
scaler = joblib.load(os.path.join(d, 'StandardScaler.pkl'))
model = joblib.load(os.path.join(d, 'RandomForestRegressor.pkl'))
df_features = pd.read_csv(os.path.join(d, 'X_train.csv'))
features = df_features.columns.tolist()
X_barrier = df_test[features]
X_barrier = scaler.transform(X_barrier)
barriers = model.predict(X_barrier)
return barriers
def get_preds_ebars_domains(df_test):
d = 'model_perovskite_ASR'
scaler = joblib.load(os.path.join(d, 'StandardScaler.pkl'))
model = joblib.load(os.path.join(d, 'RandomForestRegressor.pkl'))
df_features = pd.read_csv(os.path.join(d, 'X_train.csv'))
recal_params = pd.read_csv(os.path.join(d, 'recal_dict.csv'))
features = df_features.columns.tolist()
df_test = df_test[features]
X = scaler.transform(df_test)
# Make predictions
preds = model.predict(X)
# Get ebars and recalibrate them
errs_list = list()
a = recal_params['a'][0]
b = recal_params['b'][0]
for i, x in X.iterrows():
preds_list = list()
for pred in model.model.estimators_:
preds_list.append(pred.predict(np.array(x).reshape(1, -1))[0])
errs_list.append(np.std(preds_list))
ebars = a * np.array(errs_list) + b
# Get domains
with open(os.path.join(d, 'model.dill'), 'rb') as f:
model_domain = dill.load(f)
domains = model_domain.predict(X)
return preds, ebars, domains
def process_data(comp_list):
X = pd.DataFrame(np.empty((len(comp_list),)))
y = pd.DataFrame(np.empty((len(comp_list),)))
df_test = pd.DataFrame({'Material composition': comp_list})
# Try this both ways depending on mastml version used.
try:
X, y = ElementalFeatureGenerator(composition_df=df_test['Material composition'],
feature_types=['composition_avg', 'arithmetic_avg', 'max', 'min','difference'],
remove_constant_columns=False).evaluate(X=X, y=y, savepath=os.getcwd(), make_new_dir=False)
except:
X, y = ElementalFeatureGenerator(featurize_df=df_test['Material composition'],
feature_types=['composition_avg', 'arithmetic_avg', 'max', 'min',
'difference'], remove_constant_columns=False).evaluate(X=X, y=y, savepath=os.getcwd(), make_new_dir=False)
df_test = pd.concat([df_test, X], axis=1)
return df_test
def make_predictions(comp_list, elec_list):
# Process data
df_test = process_data(comp_list)
elec_cls_0 = list()
elec_cls_1 = list()
elec_cls_2 = list()
elec_cls_3 = list()
for elec in elec_list:
if elec == 'ceria':
elec_cls_0.append(1)
elec_cls_1.append(0)
elec_cls_2.append(0)
elec_cls_3.append(0)
elif elec == 'mixed':
elec_cls_0.append(0)
elec_cls_1.append(1)
elec_cls_2.append(0)
elec_cls_3.append(0)
elif elec == 'perovskite':
elec_cls_0.append(0)
elec_cls_1.append(0)
elec_cls_2.append(1)
elec_cls_3.append(0)
elif elec == 'zirconia':
elec_cls_0.append(0)
elec_cls_1.append(0)
elec_cls_2.append(0)
elec_cls_3.append(1)
else:
raise ValueError('Invalid electrolyte choice detected. Valid choices are "ceria", "mixed", "perovskite", "zirconia"')
df_test['Electrolyte class_0'] = elec_cls_0 # ceria
df_test['Electrolyte class_1'] = elec_cls_1 # mixed
df_test['Electrolyte class_2'] = elec_cls_2 # perovskite
df_test['Electrolyte class_3'] = elec_cls_3 # zirconia
barriers = get_barrier(df_test)
df_test['ML pred ASR barrier (eV)'] = barriers
# Get the ML predicted values
preds, ebars, domains = get_preds_ebars_domains(df_test)
pred_dict = {'Predicted log ASR at 500C (Ohm-cm2)': preds,
'Ebar log ASR at 500C (Ohm-cm2)': ebars}
for d in domains.columns.tolist():
pred_dict[d] = domains[d]
del pred_dict['y_pred']
#del pred_dict['d_pred']
del pred_dict['y_stdu_pred']
del pred_dict['y_stdc_pred']
return pd.DataFrame(pred_dict)