metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:25580
- loss:OnlineContrastiveLoss
base_model: denaya/indoSBERT-large
widget:
- source_sentence: ikhtisar arus kas triwulan 1, 2004 (miliar)
sentences:
- Balita (0-59 Bulan) Menurut Status Gizi, Tahun 1998-2005
- >-
Perbandingan Indeks dan Tingkat Inflasi Desember 2023 Kota-kota di Luar
Pulau Jawa dan Sumatera dengan Nasional (2018=100)
- >-
Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi
Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi
Sulawesi Tengah, 2018-2023
- source_sentence: >-
BaIgaimana gambaran neraca arus dana dUi Indonesia pada kuartal kedua
tahun 2015?
sentences:
- >-
Jumlah Sekolah, Guru, dan Murid Sekolah Menengah Pertama (SMP) di Bawah
Kementrian Pendidikan dan Kebudayaan Menurut Provinsi
2011/2012-2015/2016
- Ringkasan Neraca Arus Dana Triwulan III Tahun 2003 (Miliar Rupiah)
- >-
Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi
Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi
Sulawesi Tenggara, 2018-2023
- source_sentence: >-
Berapa persen pengeluaran orang di kotaa untuk makanan vs non-makanan, per
provinsi, 2018?
sentences:
- >-
Ekspor Tanaman Obat, Aromatik, dan Rempah-Rempah menurut Negara Tujuan
Utama, 2012-2023
- >-
Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan
Pendidikan Tertinggi yang Ditamatkan (ribu rupiah), 2017
- >-
IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor
(Supervisor), 1996-2014 (1996=100)
- source_sentence: Negara-negara asal impor crude oil dan produk turunannya tahun 2002-2023
sentences:
- >-
Persentase Pengeluaran Rata-rata per Kapita Sebulan Menurut Kelompok
Barang, Indonesia, 1999, 2002-2023
- >-
Rata-rata Pendapatan Bersih Berusaha Sendiri menurut Provinsi dan
Pendidikan yang Ditamatkan (ribu rupiah), 2016
- >-
Perkembangan Beberapa Agregat Pendapatan dan Pendapatan per Kapita Atas
Dasar Harga Berlaku, 2010-2016
- source_sentence: Arus dana Q3 2006
sentences:
- >-
Posisi Simpanan Berjangka Rupiah pada Bank Umum dan BPR Menurut Golongan
Pemilik (miliar rupiah), 2005-2018
- Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)
- >-
Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut
Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012
datasets:
- yahyaabd/query-hard-pos-neg-doc-pairs-statictable
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on denaya/indoSBERT-large
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: allstats semantic large v1 test
type: allstats-semantic-large-v1_test
metrics:
- type: cosine_accuracy
value: 0.9878048780487805
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7687987089157104
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9813318473112288
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7652501463890076
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9788771539744302
name: Cosine Precision
- type: cosine_recall
value: 0.9837988826815642
name: Cosine Recall
- type: cosine_ap
value: 0.9973707172812245
name: Cosine Ap
- type: cosine_mcc
value: 0.9722833961709166
name: Cosine Mcc
- task:
type: binary-classification
name: Binary Classification
dataset:
name: allstats semantic large v1 dev
type: allstats-semantic-large-v1_dev
metrics:
- type: cosine_accuracy
value: 0.9819310093082679
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.776313841342926
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9723540910360235
name: Cosine F1
- type: cosine_f1_threshold
value: 0.776313841342926
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9640088593576965
name: Cosine Precision
- type: cosine_recall
value: 0.9808450704225352
name: Cosine Recall
- type: cosine_ap
value: 0.9918988791388367
name: Cosine Ap
- type: cosine_mcc
value: 0.959014781948805
name: Cosine Mcc
SentenceTransformer based on denaya/indoSBERT-large
This is a sentence-transformers model finetuned from denaya/indoSBERT-large on the query-hard-pos-neg-doc-pairs-statictable dataset. It maps sentences & paragraphs to a 256-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: denaya/indoSBERT-large
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 256 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 1024, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-large-v1-64-1")
# Run inference
sentences = [
'Arus dana Q3 2006',
'Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)',
'Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 256]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Datasets:
allstats-semantic-large-v1_test
andallstats-semantic-large-v1_dev
- Evaluated with
BinaryClassificationEvaluator
Metric | allstats-semantic-large-v1_test | allstats-semantic-large-v1_dev |
---|---|---|
cosine_accuracy | 0.9878 | 0.9819 |
cosine_accuracy_threshold | 0.7688 | 0.7763 |
cosine_f1 | 0.9813 | 0.9724 |
cosine_f1_threshold | 0.7653 | 0.7763 |
cosine_precision | 0.9789 | 0.964 |
cosine_recall | 0.9838 | 0.9808 |
cosine_ap | 0.9974 | 0.9919 |
cosine_mcc | 0.9723 | 0.959 |
Training Details
Training Dataset
query-hard-pos-neg-doc-pairs-statictable
- Dataset: query-hard-pos-neg-doc-pairs-statictable at 7b28b96
- Size: 25,580 training samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string int details - min: 6 tokens
- mean: 17.12 tokens
- max: 31 tokens
- min: 5 tokens
- mean: 20.47 tokens
- max: 42 tokens
- 0: ~70.80%
- 1: ~29.20%
- Samples:
query doc label Status pekerjaan utama penduduk usia 15+ yang bekerja, 2020
Jumlah Penghuni Lapas per Kanwil
0
status pekerjaan utama penduduk usia 15+ yang bekerja, 2020
Jumlah Penghuni Lapas per Kanwil
0
STATUS PEKERJAAN UTAMA PENDUDUK USIA 15+ YANG BEKERJA, 2020
Jumlah Penghuni Lapas per Kanwil
0
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
query-hard-pos-neg-doc-pairs-statictable
- Dataset: query-hard-pos-neg-doc-pairs-statictable at 7b28b96
- Size: 5,479 evaluation samples
- Columns:
query
,doc
, andlabel
- Approximate statistics based on the first 1000 samples:
query doc label type string string int details - min: 7 tokens
- mean: 17.85 tokens
- max: 35 tokens
- min: 3 tokens
- mean: 21.2 tokens
- max: 31 tokens
- 0: ~71.50%
- 1: ~28.50%
- Samples:
query doc label Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014?
Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017
0
bagaimana perbandingan pns pria dan wanita di berbagai golongan tahun 2014?
Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017
0
BAGAIMANA PERBANDINGAN PNS PRIA DAN WANITA DI BERBAGAI GOLONGAN TAHUN 2014?
Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017
0
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truedataloader_num_workers
: 4load_best_model_at_end
: Trueeval_on_start
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 4dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | allstats-semantic-large-v1_test_cosine_ap | allstats-semantic-large-v1_dev_cosine_ap |
---|---|---|---|---|---|
-1 | -1 | - | - | 0.9750 | - |
0 | 0 | - | 0.5420 | - | 0.9766 |
0.05 | 20 | 0.4283 | 0.3152 | - | 0.9864 |
0.1 | 40 | 0.2681 | 0.3588 | - | 0.9828 |
0.15 | 60 | 0.1538 | 0.2478 | - | 0.9866 |
0.2 | 80 | 0.1336 | 0.1804 | - | 0.9918 |
0.25 | 100 | 0.0763 | 0.2175 | - | 0.9906 |
0.3 | 120 | 0.1878 | 0.2453 | - | 0.9862 |
0.35 | 140 | 0.0609 | 0.2112 | - | 0.9892 |
0.4 | 160 | 0.0933 | 0.1774 | - | 0.9896 |
0.45 | 180 | 0.0471 | 0.1552 | - | 0.9933 |
0.5 | 200 | 0.0516 | 0.1933 | - | 0.9942 |
0.55 | 220 | 0.0421 | 0.1992 | - | 0.9910 |
0.6 | 240 | 0.0233 | 0.1728 | - | 0.9933 |
0.65 | 260 | 0.0445 | 0.1640 | - | 0.9930 |
0.7 | 280 | 0.0157 | 0.1709 | - | 0.9894 |
0.75 | 300 | 0.022 | 0.1653 | - | 0.9889 |
0.8 | 320 | 0.0192 | 0.1655 | - | 0.9893 |
0.85 | 340 | 0.0417 | 0.1509 | - | 0.9913 |
0.9 | 360 | 0.0 | 0.1622 | - | 0.9916 |
0.95 | 380 | 0.0242 | 0.1543 | - | 0.9919 |
1.0 | 400 | 0.0 | 0.1530 | - | 0.9919 |
-1 | -1 | - | - | 0.9974 | - |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}