yahyaabd's picture
Add new SentenceTransformer model
5c72930 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:25580
  - loss:OnlineContrastiveLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
widget:
  - source_sentence: ikhtisar arus kas triwulan 1, 2004 (miliar)
    sentences:
      - Balita (0-59 Bulan) Menurut Status Gizi, Tahun 1998-2005
      - >-
        Perbandingan Indeks dan Tingkat Inflasi Desember 2023 Kota-kota di Luar
        Pulau Jawa dan Sumatera dengan Nasional (2018=100)
      - >-
        Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi
        Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi
        Sulawesi Tengah, 2018-2023
  - source_sentence: >-
      BaIgaimana gambaran neraca arus dana dUi Indonesia pada kuartal kedua
      tahun 2015?
    sentences:
      - >-
        Jumlah Sekolah, Guru, dan Murid Sekolah Menengah Pertama (SMP) di Bawah
        Kementrian Pendidikan dan Kebudayaan Menurut Provinsi
        2011/2012-2015/2016
      - Ringkasan Neraca Arus Dana Triwulan III Tahun 2003 (Miliar Rupiah)
      - >-
        Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi
        Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi
        Sulawesi Tenggara, 2018-2023
  - source_sentence: >-
      Berapa persen pengeluaran orang di kotaa untuk makanan vs non-makanan, per
      provinsi, 2018?
    sentences:
      - >-
        Ekspor Tanaman Obat, Aromatik, dan Rempah-Rempah menurut Negara Tujuan
        Utama, 2012-2023
      - >-
        Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan
        Pendidikan Tertinggi yang Ditamatkan (ribu rupiah), 2017
      - >-
        IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor
        (Supervisor), 1996-2014 (1996=100)
  - source_sentence: Negara-negara asal impor crude oil dan produk turunannya tahun 2002-2023
    sentences:
      - >-
        Persentase Pengeluaran Rata-rata per Kapita Sebulan Menurut Kelompok
        Barang, Indonesia, 1999, 2002-2023
      - >-
        Rata-rata Pendapatan Bersih Berusaha Sendiri menurut Provinsi dan
        Pendidikan yang Ditamatkan (ribu rupiah), 2016
      - >-
        Perkembangan Beberapa Agregat Pendapatan dan Pendapatan per Kapita Atas
        Dasar Harga Berlaku, 2010-2016
  - source_sentence: Arus dana Q3 2006
    sentences:
      - >-
        Posisi Simpanan Berjangka Rupiah pada Bank Umum dan BPR Menurut Golongan
        Pemilik (miliar rupiah), 2005-2018
      - Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)
      - >-
        Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut
        Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012
datasets:
  - yahyaabd/query-hard-pos-neg-doc-pairs-statictable
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - cosine_mcc
model-index:
  - name: >-
      SentenceTransformer based on
      sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: allstats semantic mini v1 test
          type: allstats-semantic-mini-v1_test
        metrics:
          - type: cosine_accuracy
            value: 0.9649571089614893
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.688197910785675
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9462184873949578
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.688197910785675
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.9409470752089136
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9515492957746479
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9858302481584482
            name: Cosine Ap
          - type: cosine_mcc
            value: 0.9202633777403256
            name: Cosine Mcc
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: allstats semantic mini v1 dev
          type: allstats-semantic-mini-v1_dev
        metrics:
          - type: cosine_accuracy
            value: 0.9651396240189816
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.6833629608154297
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9464836088540207
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.6833629608154297
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.9414715719063546
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9515492957746479
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9862354589024407
            name: Cosine Ap
          - type: cosine_mcc
            value: 0.9206641526376831
            name: Cosine Mcc

SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 on the query-hard-pos-neg-doc-pairs-statictable dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-miniLM-v1-3")
# Run inference
sentences = [
    'Arus dana Q3 2006',
    'Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)',
    'Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric allstats-semantic-mini-v1_test allstats-semantic-mini-v1_dev
cosine_accuracy 0.965 0.9651
cosine_accuracy_threshold 0.6882 0.6834
cosine_f1 0.9462 0.9465
cosine_f1_threshold 0.6882 0.6834
cosine_precision 0.9409 0.9415
cosine_recall 0.9515 0.9515
cosine_ap 0.9858 0.9862
cosine_mcc 0.9203 0.9207

Training Details

Training Dataset

query-hard-pos-neg-doc-pairs-statictable

  • Dataset: query-hard-pos-neg-doc-pairs-statictable at 7b28b96
  • Size: 25,580 training samples
  • Columns: query, doc, and label
  • Approximate statistics based on the first 1000 samples:
    query doc label
    type string string int
    details
    • min: 7 tokens
    • mean: 20.14 tokens
    • max: 55 tokens
    • min: 5 tokens
    • mean: 24.9 tokens
    • max: 47 tokens
    • 0: ~70.80%
    • 1: ~29.20%
  • Samples:
    query doc label
    Status pekerjaan utama penduduk usia 15+ yang bekerja, 2020 Jumlah Penghuni Lapas per Kanwil 0
    status pekerjaan utama penduduk usia 15+ yang bekerja, 2020 Jumlah Penghuni Lapas per Kanwil 0
    STATUS PEKERJAAN UTAMA PENDUDUK USIA 15+ YANG BEKERJA, 2020 Jumlah Penghuni Lapas per Kanwil 0
  • Loss: OnlineContrastiveLoss

Evaluation Dataset

query-hard-pos-neg-doc-pairs-statictable

  • Dataset: query-hard-pos-neg-doc-pairs-statictable at 7b28b96
  • Size: 5,479 evaluation samples
  • Columns: query, doc, and label
  • Approximate statistics based on the first 1000 samples:
    query doc label
    type string string int
    details
    • min: 7 tokens
    • mean: 20.78 tokens
    • max: 52 tokens
    • min: 4 tokens
    • mean: 26.28 tokens
    • max: 43 tokens
    • 0: ~71.50%
    • 1: ~28.50%
  • Samples:
    query doc label
    Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014? Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017 0
    bagaimana perbandingan pns pria dan wanita di berbagai golongan tahun 2014? Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017 0
    BAGAIMANA PERBANDINGAN PNS PRIA DAN WANITA DI BERBAGAI GOLONGAN TAHUN 2014? Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017 0
  • Loss: OnlineContrastiveLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True
  • eval_on_start: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: True
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss allstats-semantic-mini-v1_test_cosine_ap allstats-semantic-mini-v1_dev_cosine_ap
-1 -1 - - 0.8789 -
0 0 - 0.4455 - 0.8789
0.0125 20 0.4484 0.3363 - 0.8893
0.0250 40 0.1921 0.2230 - 0.9052
0.0375 60 0.1779 0.1435 - 0.9440
0.0500 80 0.1047 0.1269 - 0.9511
0.0625 100 0.0669 0.1498 - 0.9445
0.0750 120 0.1662 0.1028 - 0.9630
0.0876 140 0.0774 0.1115 - 0.9589
0.1001 160 0.0947 0.1204 - 0.9500
0.1126 180 0.1285 0.1464 - 0.9456
0.1251 200 0.0793 0.1024 - 0.9600
0.1376 220 0.0792 0.0992 - 0.9607
0.1501 240 0.0696 0.0931 - 0.9642
0.1626 260 0.0692 0.1205 - 0.9538
0.1751 280 0.1015 0.0980 - 0.9629
0.1876 300 0.0628 0.1001 - 0.9634
0.2001 320 0.0335 0.1094 - 0.9650
0.2126 340 0.0668 0.0941 - 0.9673
0.2251 360 0.0662 0.0765 - 0.9748
0.2376 380 0.0251 0.0674 - 0.9784
0.2502 400 0.0771 0.0667 - 0.9805
0.2627 420 0.0363 0.0576 - 0.9785
0.2752 440 0.0762 0.0787 - 0.9726
0.2877 460 0.0475 0.0649 - 0.9773
0.3002 480 0.0086 0.0692 - 0.9760
0.3127 500 0.0242 0.0636 - 0.9771
0.3252 520 0.0342 0.0700 - 0.9758
0.3377 540 0.0568 0.0547 - 0.9792
0.3502 560 0.0286 0.0508 - 0.9808
0.3627 580 0.0426 0.0518 - 0.9823
0.3752 600 0.03 0.0553 - 0.9806
0.3877 620 0.0146 0.0826 - 0.9748
0.4003 640 0.0417 0.0667 - 0.9779
0.4128 660 0.0081 0.0667 - 0.9775
0.4253 680 0.0094 0.0704 - 0.9798
0.4378 700 0.0225 0.0525 - 0.9841
0.4503 720 0.0217 0.0462 - 0.9861
0.4628 740 0.011 0.0466 - 0.9858
0.4753 760 0.0191 0.0495 - 0.9846
0.4878 780 0.0146 0.0478 - 0.9847
0.5003 800 0.0076 0.0424 - 0.9852
0.5128 820 0.035 0.0549 - 0.9821
0.5253 840 0.0321 0.0551 - 0.9796
0.5378 860 0.0241 0.0559 - 0.9781
0.5503 880 0.0335 0.0525 - 0.9792
0.5629 900 0.0125 0.0539 - 0.9799
0.5754 920 0.0154 0.0512 - 0.9823
0.5879 940 0.0133 0.0497 - 0.9824
0.6004 960 0.0072 0.0532 - 0.9821
0.6129 980 0.0192 0.0520 - 0.9809
0.6254 1000 0.0199 0.0503 - 0.9811
0.6379 1020 0.0069 0.0484 - 0.9824
0.6504 1040 0.0065 0.0514 - 0.9806
0.6629 1060 0.0098 0.0479 - 0.9834
0.6754 1080 0.0 0.0480 - 0.9841
0.6879 1100 0.0247 0.0508 - 0.9835
0.7004 1120 0.0137 0.0481 - 0.9842
0.7129 1140 0.0068 0.0512 - 0.9838
0.7255 1160 0.0182 0.0473 - 0.9851
0.7380 1180 0.0129 0.0442 - 0.9859
0.7505 1200 0.0 0.0436 - 0.9860
0.7630 1220 0.0073 0.0439 - 0.9858
0.7755 1240 0.0081 0.0441 - 0.9859
0.7880 1260 0.0305 0.0460 - 0.9857
0.8005 1280 0.0003 0.0486 - 0.9851
0.8130 1300 0.0218 0.0501 - 0.9852
0.8255 1320 0.0187 0.0435 - 0.9844
0.8380 1340 0.0205 0.0437 - 0.9846
0.8505 1360 0.0094 0.0442 - 0.9851
0.8630 1380 0.0083 0.0426 - 0.9856
0.8755 1400 0.0 0.0423 - 0.9858
0.8881 1420 0.0 0.0424 - 0.9859
0.9006 1440 0.0073 0.0428 - 0.9859
0.9131 1460 0.0075 0.0441 - 0.9859
0.9256 1480 0.0177 0.0447 - 0.9858
0.9381 1500 0.0 0.0438 - 0.9858
0.9506 1520 0.0 0.0438 - 0.9858
0.9631 1540 0.0072 0.0440 - 0.9860
0.9756 1560 0.0101 0.0436 - 0.9861
0.9881 1580 0.0277 0.0437 - 0.9862
-1 -1 - - 0.9858 -
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.4.0
  • Transformers: 4.48.1
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}