yahyaabd's picture
Add new SentenceTransformer model
5c72930 verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:25580
- loss:OnlineContrastiveLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
widget:
- source_sentence: ikhtisar arus kas triwulan 1, 2004 (miliar)
sentences:
- Balita (0-59 Bulan) Menurut Status Gizi, Tahun 1998-2005
- Perbandingan Indeks dan Tingkat Inflasi Desember 2023 Kota-kota di Luar Pulau
Jawa dan Sumatera dengan Nasional (2018=100)
- Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tengah, 2018-2023
- source_sentence: BaIgaimana gambaran neraca arus dana dUi Indonesia pada kuartal
kedua tahun 2015?
sentences:
- Jumlah Sekolah, Guru, dan Murid Sekolah Menengah Pertama (SMP) di Bawah Kementrian
Pendidikan dan Kebudayaan Menurut Provinsi 2011/2012-2015/2016
- Ringkasan Neraca Arus Dana Triwulan III Tahun 2003 (Miliar Rupiah)
- Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tenggara, 2018-2023
- source_sentence: Berapa persen pengeluaran orang di kotaa untuk makanan vs non-makanan,
per provinsi, 2018?
sentences:
- Ekspor Tanaman Obat, Aromatik, dan Rempah-Rempah menurut Negara Tujuan Utama,
2012-2023
- Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan Pendidikan Tertinggi
yang Ditamatkan (ribu rupiah), 2017
- IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor),
1996-2014 (1996=100)
- source_sentence: Negara-negara asal impor crude oil dan produk turunannya tahun
2002-2023
sentences:
- Persentase Pengeluaran Rata-rata per Kapita Sebulan Menurut Kelompok Barang, Indonesia,
1999, 2002-2023
- Rata-rata Pendapatan Bersih Berusaha Sendiri menurut Provinsi dan Pendidikan yang
Ditamatkan (ribu rupiah), 2016
- Perkembangan Beberapa Agregat Pendapatan dan Pendapatan per Kapita Atas Dasar
Harga Berlaku, 2010-2016
- source_sentence: Arus dana Q3 2006
sentences:
- Posisi Simpanan Berjangka Rupiah pada Bank Umum dan BPR Menurut Golongan Pemilik
(miliar rupiah), 2005-2018
- Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)
- Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok
Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012
datasets:
- yahyaabd/query-hard-pos-neg-doc-pairs-statictable
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: allstats semantic mini v1 test
type: allstats-semantic-mini-v1_test
metrics:
- type: cosine_accuracy
value: 0.9649571089614893
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.688197910785675
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9462184873949578
name: Cosine F1
- type: cosine_f1_threshold
value: 0.688197910785675
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9409470752089136
name: Cosine Precision
- type: cosine_recall
value: 0.9515492957746479
name: Cosine Recall
- type: cosine_ap
value: 0.9858302481584482
name: Cosine Ap
- type: cosine_mcc
value: 0.9202633777403256
name: Cosine Mcc
- task:
type: binary-classification
name: Binary Classification
dataset:
name: allstats semantic mini v1 dev
type: allstats-semantic-mini-v1_dev
metrics:
- type: cosine_accuracy
value: 0.9651396240189816
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.6833629608154297
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9464836088540207
name: Cosine F1
- type: cosine_f1_threshold
value: 0.6833629608154297
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9414715719063546
name: Cosine Precision
- type: cosine_recall
value: 0.9515492957746479
name: Cosine Recall
- type: cosine_ap
value: 0.9862354589024407
name: Cosine Ap
- type: cosine_mcc
value: 0.9206641526376831
name: Cosine Mcc
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 8d6b950845285729817bf8e1af1861502c2fed0c -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-miniLM-v1-3")
# Run inference
sentences = [
'Arus dana Q3 2006',
'Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)',
'Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Binary Classification
* Datasets: `allstats-semantic-mini-v1_test` and `allstats-semantic-mini-v1_dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | allstats-semantic-mini-v1_test | allstats-semantic-mini-v1_dev |
|:--------------------------|:-------------------------------|:------------------------------|
| cosine_accuracy | 0.965 | 0.9651 |
| cosine_accuracy_threshold | 0.6882 | 0.6834 |
| cosine_f1 | 0.9462 | 0.9465 |
| cosine_f1_threshold | 0.6882 | 0.6834 |
| cosine_precision | 0.9409 | 0.9415 |
| cosine_recall | 0.9515 | 0.9515 |
| **cosine_ap** | **0.9858** | **0.9862** |
| cosine_mcc | 0.9203 | 0.9207 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### query-hard-pos-neg-doc-pairs-statictable
* Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f)
* Size: 25,580 training samples
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 7 tokens</li><li>mean: 20.14 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 24.9 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>0: ~70.80%</li><li>1: ~29.20%</li></ul> |
* Samples:
| query | doc | label |
|:-------------------------------------------------------------------------|:----------------------------------------------|:---------------|
| <code>Status pekerjaan utama penduduk usia 15+ yang bekerja, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
| <code>status pekerjaan utama penduduk usia 15+ yang bekerja, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
| <code>STATUS PEKERJAAN UTAMA PENDUDUK USIA 15+ YANG BEKERJA, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Evaluation Dataset
#### query-hard-pos-neg-doc-pairs-statictable
* Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f)
* Size: 5,479 evaluation samples
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 7 tokens</li><li>mean: 20.78 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.28 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>0: ~71.50%</li><li>1: ~28.50%</li></ul> |
* Samples:
| query | doc | label |
|:-----------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
| <code>bagaimana perbandingan pns pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
| <code>BAGAIMANA PERBANDINGAN PNS PRIA DAN WANITA DI BERBAGAI GOLONGAN TAHUN 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `eval_on_start`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: True
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | allstats-semantic-mini-v1_test_cosine_ap | allstats-semantic-mini-v1_dev_cosine_ap |
|:----------:|:--------:|:-------------:|:---------------:|:----------------------------------------:|:---------------------------------------:|
| -1 | -1 | - | - | 0.8789 | - |
| 0 | 0 | - | 0.4455 | - | 0.8789 |
| 0.0125 | 20 | 0.4484 | 0.3363 | - | 0.8893 |
| 0.0250 | 40 | 0.1921 | 0.2230 | - | 0.9052 |
| 0.0375 | 60 | 0.1779 | 0.1435 | - | 0.9440 |
| 0.0500 | 80 | 0.1047 | 0.1269 | - | 0.9511 |
| 0.0625 | 100 | 0.0669 | 0.1498 | - | 0.9445 |
| 0.0750 | 120 | 0.1662 | 0.1028 | - | 0.9630 |
| 0.0876 | 140 | 0.0774 | 0.1115 | - | 0.9589 |
| 0.1001 | 160 | 0.0947 | 0.1204 | - | 0.9500 |
| 0.1126 | 180 | 0.1285 | 0.1464 | - | 0.9456 |
| 0.1251 | 200 | 0.0793 | 0.1024 | - | 0.9600 |
| 0.1376 | 220 | 0.0792 | 0.0992 | - | 0.9607 |
| 0.1501 | 240 | 0.0696 | 0.0931 | - | 0.9642 |
| 0.1626 | 260 | 0.0692 | 0.1205 | - | 0.9538 |
| 0.1751 | 280 | 0.1015 | 0.0980 | - | 0.9629 |
| 0.1876 | 300 | 0.0628 | 0.1001 | - | 0.9634 |
| 0.2001 | 320 | 0.0335 | 0.1094 | - | 0.9650 |
| 0.2126 | 340 | 0.0668 | 0.0941 | - | 0.9673 |
| 0.2251 | 360 | 0.0662 | 0.0765 | - | 0.9748 |
| 0.2376 | 380 | 0.0251 | 0.0674 | - | 0.9784 |
| 0.2502 | 400 | 0.0771 | 0.0667 | - | 0.9805 |
| 0.2627 | 420 | 0.0363 | 0.0576 | - | 0.9785 |
| 0.2752 | 440 | 0.0762 | 0.0787 | - | 0.9726 |
| 0.2877 | 460 | 0.0475 | 0.0649 | - | 0.9773 |
| 0.3002 | 480 | 0.0086 | 0.0692 | - | 0.9760 |
| 0.3127 | 500 | 0.0242 | 0.0636 | - | 0.9771 |
| 0.3252 | 520 | 0.0342 | 0.0700 | - | 0.9758 |
| 0.3377 | 540 | 0.0568 | 0.0547 | - | 0.9792 |
| 0.3502 | 560 | 0.0286 | 0.0508 | - | 0.9808 |
| 0.3627 | 580 | 0.0426 | 0.0518 | - | 0.9823 |
| 0.3752 | 600 | 0.03 | 0.0553 | - | 0.9806 |
| 0.3877 | 620 | 0.0146 | 0.0826 | - | 0.9748 |
| 0.4003 | 640 | 0.0417 | 0.0667 | - | 0.9779 |
| 0.4128 | 660 | 0.0081 | 0.0667 | - | 0.9775 |
| 0.4253 | 680 | 0.0094 | 0.0704 | - | 0.9798 |
| 0.4378 | 700 | 0.0225 | 0.0525 | - | 0.9841 |
| 0.4503 | 720 | 0.0217 | 0.0462 | - | 0.9861 |
| 0.4628 | 740 | 0.011 | 0.0466 | - | 0.9858 |
| 0.4753 | 760 | 0.0191 | 0.0495 | - | 0.9846 |
| 0.4878 | 780 | 0.0146 | 0.0478 | - | 0.9847 |
| 0.5003 | 800 | 0.0076 | 0.0424 | - | 0.9852 |
| 0.5128 | 820 | 0.035 | 0.0549 | - | 0.9821 |
| 0.5253 | 840 | 0.0321 | 0.0551 | - | 0.9796 |
| 0.5378 | 860 | 0.0241 | 0.0559 | - | 0.9781 |
| 0.5503 | 880 | 0.0335 | 0.0525 | - | 0.9792 |
| 0.5629 | 900 | 0.0125 | 0.0539 | - | 0.9799 |
| 0.5754 | 920 | 0.0154 | 0.0512 | - | 0.9823 |
| 0.5879 | 940 | 0.0133 | 0.0497 | - | 0.9824 |
| 0.6004 | 960 | 0.0072 | 0.0532 | - | 0.9821 |
| 0.6129 | 980 | 0.0192 | 0.0520 | - | 0.9809 |
| 0.6254 | 1000 | 0.0199 | 0.0503 | - | 0.9811 |
| 0.6379 | 1020 | 0.0069 | 0.0484 | - | 0.9824 |
| 0.6504 | 1040 | 0.0065 | 0.0514 | - | 0.9806 |
| 0.6629 | 1060 | 0.0098 | 0.0479 | - | 0.9834 |
| 0.6754 | 1080 | 0.0 | 0.0480 | - | 0.9841 |
| 0.6879 | 1100 | 0.0247 | 0.0508 | - | 0.9835 |
| 0.7004 | 1120 | 0.0137 | 0.0481 | - | 0.9842 |
| 0.7129 | 1140 | 0.0068 | 0.0512 | - | 0.9838 |
| 0.7255 | 1160 | 0.0182 | 0.0473 | - | 0.9851 |
| 0.7380 | 1180 | 0.0129 | 0.0442 | - | 0.9859 |
| 0.7505 | 1200 | 0.0 | 0.0436 | - | 0.9860 |
| 0.7630 | 1220 | 0.0073 | 0.0439 | - | 0.9858 |
| 0.7755 | 1240 | 0.0081 | 0.0441 | - | 0.9859 |
| 0.7880 | 1260 | 0.0305 | 0.0460 | - | 0.9857 |
| 0.8005 | 1280 | 0.0003 | 0.0486 | - | 0.9851 |
| 0.8130 | 1300 | 0.0218 | 0.0501 | - | 0.9852 |
| 0.8255 | 1320 | 0.0187 | 0.0435 | - | 0.9844 |
| 0.8380 | 1340 | 0.0205 | 0.0437 | - | 0.9846 |
| 0.8505 | 1360 | 0.0094 | 0.0442 | - | 0.9851 |
| 0.8630 | 1380 | 0.0083 | 0.0426 | - | 0.9856 |
| **0.8755** | **1400** | **0.0** | **0.0423** | **-** | **0.9858** |
| 0.8881 | 1420 | 0.0 | 0.0424 | - | 0.9859 |
| 0.9006 | 1440 | 0.0073 | 0.0428 | - | 0.9859 |
| 0.9131 | 1460 | 0.0075 | 0.0441 | - | 0.9859 |
| 0.9256 | 1480 | 0.0177 | 0.0447 | - | 0.9858 |
| 0.9381 | 1500 | 0.0 | 0.0438 | - | 0.9858 |
| 0.9506 | 1520 | 0.0 | 0.0438 | - | 0.9858 |
| 0.9631 | 1540 | 0.0072 | 0.0440 | - | 0.9860 |
| 0.9756 | 1560 | 0.0101 | 0.0436 | - | 0.9861 |
| 0.9881 | 1580 | 0.0277 | 0.0437 | - | 0.9862 |
| -1 | -1 | - | - | 0.9858 | - |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->