yahyaabd's picture
Add new SentenceTransformer model
ed767c0 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:25580
  - loss:OnlineContrastiveLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
widget:
  - source_sentence: ikhtisar arus kas triwulan 1, 2004 (miliar)
    sentences:
      - Balita (0-59 Bulan) Menurut Status Gizi, Tahun 1998-2005
      - >-
        Perbandingan Indeks dan Tingkat Inflasi Desember 2023 Kota-kota di Luar
        Pulau Jawa dan Sumatera dengan Nasional (2018=100)
      - >-
        Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi
        Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi
        Sulawesi Tengah, 2018-2023
  - source_sentence: >-
      BaIgaimana gambaran neraca arus dana dUi Indonesia pada kuartal kedua
      tahun 2015?
    sentences:
      - >-
        Jumlah Sekolah, Guru, dan Murid Sekolah Menengah Pertama (SMP) di Bawah
        Kementrian Pendidikan dan Kebudayaan Menurut Provinsi
        2011/2012-2015/2016
      - Ringkasan Neraca Arus Dana Triwulan III Tahun 2003 (Miliar Rupiah)
      - >-
        Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi
        Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi
        Sulawesi Tenggara, 2018-2023
  - source_sentence: >-
      Berapa persen pengeluaran orang di kotaa untuk makanan vs non-makanan, per
      provinsi, 2018?
    sentences:
      - >-
        Ekspor Tanaman Obat, Aromatik, dan Rempah-Rempah menurut Negara Tujuan
        Utama, 2012-2023
      - >-
        Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan
        Pendidikan Tertinggi yang Ditamatkan (ribu rupiah), 2017
      - >-
        IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor
        (Supervisor), 1996-2014 (1996=100)
  - source_sentence: Negara-negara asal impor crude oil dan produk turunannya tahun 2002-2023
    sentences:
      - >-
        Persentase Pengeluaran Rata-rata per Kapita Sebulan Menurut Kelompok
        Barang, Indonesia, 1999, 2002-2023
      - >-
        Rata-rata Pendapatan Bersih Berusaha Sendiri menurut Provinsi dan
        Pendidikan yang Ditamatkan (ribu rupiah), 2016
      - >-
        Perkembangan Beberapa Agregat Pendapatan dan Pendapatan per Kapita Atas
        Dasar Harga Berlaku, 2010-2016
  - source_sentence: Arus dana Q3 2006
    sentences:
      - >-
        Posisi Simpanan Berjangka Rupiah pada Bank Umum dan BPR Menurut Golongan
        Pemilik (miliar rupiah), 2005-2018
      - Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)
      - >-
        Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut
        Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012
datasets:
  - yahyaabd/query-hard-pos-neg-doc-pairs-statictable
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - cosine_mcc
model-index:
  - name: >-
      SentenceTransformer based on
      sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: allstats semantic mini v1 test
          type: allstats-semantic-mini-v1_test
        metrics:
          - type: cosine_accuracy
            value: 0.9739003467786093
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.7543691396713257
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9601560323209808
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.7539516091346741
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.9498346196251378
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9707042253521126
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9914629836831814
            name: Cosine Ap
          - type: cosine_mcc
            value: 0.9408766527185352
            name: Cosine Mcc
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: allstats semantic mini v1 dev
          type: allstats-semantic-mini-v1_dev
        metrics:
          - type: cosine_accuracy
            value: 0.9695199853987954
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.7802088856697083
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9531511433351924
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.7691957950592041
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.943677526228603
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9628169014084507
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9911428464355772
            name: Cosine Ap
          - type: cosine_mcc
            value: 0.9304692189028425
            name: Cosine Mcc

SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 on the query-hard-pos-neg-doc-pairs-statictable dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-miniLM-v1-4")
# Run inference
sentences = [
    'Arus dana Q3 2006',
    'Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)',
    'Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric allstats-semantic-mini-v1_test allstats-semantic-mini-v1_dev
cosine_accuracy 0.9739 0.9695
cosine_accuracy_threshold 0.7544 0.7802
cosine_f1 0.9602 0.9532
cosine_f1_threshold 0.754 0.7692
cosine_precision 0.9498 0.9437
cosine_recall 0.9707 0.9628
cosine_ap 0.9915 0.9911
cosine_mcc 0.9409 0.9305

Training Details

Training Dataset

query-hard-pos-neg-doc-pairs-statictable

  • Dataset: query-hard-pos-neg-doc-pairs-statictable at 7b28b96
  • Size: 25,580 training samples
  • Columns: query, doc, and label
  • Approximate statistics based on the first 1000 samples:
    query doc label
    type string string int
    details
    • min: 7 tokens
    • mean: 20.14 tokens
    • max: 55 tokens
    • min: 5 tokens
    • mean: 24.9 tokens
    • max: 47 tokens
    • 0: ~70.80%
    • 1: ~29.20%
  • Samples:
    query doc label
    Status pekerjaan utama penduduk usia 15+ yang bekerja, 2020 Jumlah Penghuni Lapas per Kanwil 0
    status pekerjaan utama penduduk usia 15+ yang bekerja, 2020 Jumlah Penghuni Lapas per Kanwil 0
    STATUS PEKERJAAN UTAMA PENDUDUK USIA 15+ YANG BEKERJA, 2020 Jumlah Penghuni Lapas per Kanwil 0
  • Loss: OnlineContrastiveLoss

Evaluation Dataset

query-hard-pos-neg-doc-pairs-statictable

  • Dataset: query-hard-pos-neg-doc-pairs-statictable at 7b28b96
  • Size: 5,479 evaluation samples
  • Columns: query, doc, and label
  • Approximate statistics based on the first 1000 samples:
    query doc label
    type string string int
    details
    • min: 7 tokens
    • mean: 20.78 tokens
    • max: 52 tokens
    • min: 4 tokens
    • mean: 26.28 tokens
    • max: 43 tokens
    • 0: ~71.50%
    • 1: ~28.50%
  • Samples:
    query doc label
    Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014? Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017 0
    bagaimana perbandingan pns pria dan wanita di berbagai golongan tahun 2014? Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017 0
    BAGAIMANA PERBANDINGAN PNS PRIA DAN WANITA DI BERBAGAI GOLONGAN TAHUN 2014? Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017 0
  • Loss: OnlineContrastiveLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • num_train_epochs: 2
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True
  • eval_on_start: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: True
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss allstats-semantic-mini-v1_test_cosine_ap allstats-semantic-mini-v1_dev_cosine_ap
-1 -1 - - 0.8789 -
0 0 - 1.0484 - 0.8789
0.025 20 0.9076 0.7143 - 0.8976
0.05 40 0.4666 0.4744 - 0.9234
0.075 60 0.4514 0.3208 - 0.9542
0.1 80 0.3153 0.2520 - 0.9666
0.125 100 0.1726 0.2074 - 0.9725
0.15 120 0.1056 0.1860 - 0.9750
0.175 140 0.1414 0.2540 - 0.9674
0.2 160 0.1091 0.2077 - 0.9747
0.225 180 0.108 0.2333 - 0.9690
0.25 200 0.1672 0.1618 - 0.9771
0.275 220 0.1086 0.1804 - 0.9775
0.3 240 0.083 0.1805 - 0.9760
0.325 260 0.083 0.1674 - 0.9709
0.35 280 0.1197 0.1735 - 0.9734
0.375 300 0.0811 0.1272 - 0.9805
0.4 320 0.049 0.1491 - 0.9791
0.425 340 0.0373 0.1651 - 0.9721
0.45 360 0.1116 0.1742 - 0.9756
0.475 380 0.0665 0.1175 - 0.9837
0.5 400 0.0698 0.1165 - 0.9841
0.525 420 0.1316 0.1353 - 0.9817
0.55 440 0.0753 0.1276 - 0.9824
0.575 460 0.0411 0.1353 - 0.9801
0.6 480 0.0099 0.1292 - 0.9811
0.625 500 0.0473 0.1118 - 0.9836
0.65 520 0.0201 0.1083 - 0.9836
0.675 540 0.0519 0.1089 - 0.9856
0.7 560 0.0652 0.1003 - 0.9875
0.725 580 0.0594 0.1201 - 0.9872
0.75 600 0.0536 0.0896 - 0.9893
0.775 620 0.0479 0.0855 - 0.9874
0.8 640 0.0301 0.0948 - 0.9876
0.825 660 0.014 0.0993 - 0.9883
0.85 680 0.0199 0.0930 - 0.9884
0.875 700 0.0375 0.0765 - 0.9918
0.9 720 0.0 0.0805 - 0.9916
0.925 740 0.0243 0.0816 - 0.9916
0.95 760 0.0209 0.0935 - 0.9896
0.975 780 0.02 0.0831 - 0.9897
1.0 800 0.0376 0.0849 - 0.9890
1.025 820 0.0113 0.0960 - 0.9883
1.05 840 0.01 0.1131 - 0.9868
1.075 860 0.0294 0.1069 - 0.9861
1.1 880 0.0367 0.0921 - 0.9899
1.125 900 0.0 0.0910 - 0.9898
1.15 920 0.0163 0.1122 - 0.9871
1.175 940 0.0072 0.1204 - 0.9852
1.2 960 0.0175 0.1047 - 0.9872
1.225 980 0.0065 0.0992 - 0.9882
1.25 1000 0.0104 0.0932 - 0.9890
1.275 1020 0.0281 0.0866 - 0.9897
1.3 1040 0.0169 0.0874 - 0.9899
1.325 1060 0.0069 0.0910 - 0.9904
1.35 1080 0.0 0.0983 - 0.9898
1.375 1100 0.0 0.0985 - 0.9897
1.4 1120 0.0146 0.0919 - 0.9904
1.425 1140 0.0075 0.0852 - 0.9908
1.45 1160 0.014 0.0845 - 0.9908
1.475 1180 0.0065 0.0816 - 0.9907
1.5 1200 0.0 0.0811 - 0.9907
1.525 1220 0.0103 0.0785 - 0.9910
1.55 1240 0.013 0.0721 - 0.9915
1.575 1260 0.0066 0.0793 - 0.9910
1.6 1280 0.0 0.0810 - 0.9909
1.625 1300 0.0239 0.0803 - 0.9912
1.65 1320 0.0155 0.0816 - 0.9908
1.675 1340 0.009 0.0859 - 0.9904
1.7 1360 0.0065 0.0855 - 0.9900
1.725 1380 0.0 0.0866 - 0.9899
1.75 1400 0.0127 0.0865 - 0.9907
1.775 1420 0.0064 0.0819 - 0.9909
1.8 1440 0.0 0.0828 - 0.9910
1.825 1460 0.0081 0.0818 - 0.9912
1.85 1480 0.0068 0.0875 - 0.9909
1.875 1500 0.0 0.0886 - 0.9909
1.9 1520 0.011 0.0846 - 0.9911
1.925 1540 0.0 0.0843 - 0.9911
1.95 1560 0.0 0.0843 - 0.9911
1.975 1580 0.0 0.0843 - 0.9911
2.0 1600 0.0162 0.0850 - 0.9911
-1 -1 - - 0.9915 -
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.4.0
  • Transformers: 4.48.1
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}