yahyaabd's picture
Add new SentenceTransformer model
ed767c0 verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:25580
- loss:OnlineContrastiveLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
widget:
- source_sentence: ikhtisar arus kas triwulan 1, 2004 (miliar)
sentences:
- Balita (0-59 Bulan) Menurut Status Gizi, Tahun 1998-2005
- Perbandingan Indeks dan Tingkat Inflasi Desember 2023 Kota-kota di Luar Pulau
Jawa dan Sumatera dengan Nasional (2018=100)
- Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tengah, 2018-2023
- source_sentence: BaIgaimana gambaran neraca arus dana dUi Indonesia pada kuartal
kedua tahun 2015?
sentences:
- Jumlah Sekolah, Guru, dan Murid Sekolah Menengah Pertama (SMP) di Bawah Kementrian
Pendidikan dan Kebudayaan Menurut Provinsi 2011/2012-2015/2016
- Ringkasan Neraca Arus Dana Triwulan III Tahun 2003 (Miliar Rupiah)
- Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi Makanan
dan Golongan Pengeluaran per Kapita Seminggu di Provinsi Sulawesi Tenggara, 2018-2023
- source_sentence: Berapa persen pengeluaran orang di kotaa untuk makanan vs non-makanan,
per provinsi, 2018?
sentences:
- Ekspor Tanaman Obat, Aromatik, dan Rempah-Rempah menurut Negara Tujuan Utama,
2012-2023
- Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan Pendidikan Tertinggi
yang Ditamatkan (ribu rupiah), 2017
- IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor (Supervisor),
1996-2014 (1996=100)
- source_sentence: Negara-negara asal impor crude oil dan produk turunannya tahun
2002-2023
sentences:
- Persentase Pengeluaran Rata-rata per Kapita Sebulan Menurut Kelompok Barang, Indonesia,
1999, 2002-2023
- Rata-rata Pendapatan Bersih Berusaha Sendiri menurut Provinsi dan Pendidikan yang
Ditamatkan (ribu rupiah), 2016
- Perkembangan Beberapa Agregat Pendapatan dan Pendapatan per Kapita Atas Dasar
Harga Berlaku, 2010-2016
- source_sentence: Arus dana Q3 2006
sentences:
- Posisi Simpanan Berjangka Rupiah pada Bank Umum dan BPR Menurut Golongan Pemilik
(miliar rupiah), 2005-2018
- Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)
- Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok
Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012
datasets:
- yahyaabd/query-hard-pos-neg-doc-pairs-statictable
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: allstats semantic mini v1 test
type: allstats-semantic-mini-v1_test
metrics:
- type: cosine_accuracy
value: 0.9739003467786093
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7543691396713257
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9601560323209808
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7539516091346741
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9498346196251378
name: Cosine Precision
- type: cosine_recall
value: 0.9707042253521126
name: Cosine Recall
- type: cosine_ap
value: 0.9914629836831814
name: Cosine Ap
- type: cosine_mcc
value: 0.9408766527185352
name: Cosine Mcc
- task:
type: binary-classification
name: Binary Classification
dataset:
name: allstats semantic mini v1 dev
type: allstats-semantic-mini-v1_dev
metrics:
- type: cosine_accuracy
value: 0.9695199853987954
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7802088856697083
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9531511433351924
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7691957950592041
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.943677526228603
name: Cosine Precision
- type: cosine_recall
value: 0.9628169014084507
name: Cosine Recall
- type: cosine_ap
value: 0.9911428464355772
name: Cosine Ap
- type: cosine_mcc
value: 0.9304692189028425
name: Cosine Mcc
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 8d6b950845285729817bf8e1af1861502c2fed0c -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-miniLM-v1-4")
# Run inference
sentences = [
'Arus dana Q3 2006',
'Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)',
'Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Binary Classification
* Datasets: `allstats-semantic-mini-v1_test` and `allstats-semantic-mini-v1_dev`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | allstats-semantic-mini-v1_test | allstats-semantic-mini-v1_dev |
|:--------------------------|:-------------------------------|:------------------------------|
| cosine_accuracy | 0.9739 | 0.9695 |
| cosine_accuracy_threshold | 0.7544 | 0.7802 |
| cosine_f1 | 0.9602 | 0.9532 |
| cosine_f1_threshold | 0.754 | 0.7692 |
| cosine_precision | 0.9498 | 0.9437 |
| cosine_recall | 0.9707 | 0.9628 |
| **cosine_ap** | **0.9915** | **0.9911** |
| cosine_mcc | 0.9409 | 0.9305 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### query-hard-pos-neg-doc-pairs-statictable
* Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f)
* Size: 25,580 training samples
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 7 tokens</li><li>mean: 20.14 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 24.9 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>0: ~70.80%</li><li>1: ~29.20%</li></ul> |
* Samples:
| query | doc | label |
|:-------------------------------------------------------------------------|:----------------------------------------------|:---------------|
| <code>Status pekerjaan utama penduduk usia 15+ yang bekerja, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
| <code>status pekerjaan utama penduduk usia 15+ yang bekerja, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
| <code>STATUS PEKERJAAN UTAMA PENDUDUK USIA 15+ YANG BEKERJA, 2020</code> | <code>Jumlah Penghuni Lapas per Kanwil</code> | <code>0</code> |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Evaluation Dataset
#### query-hard-pos-neg-doc-pairs-statictable
* Dataset: [query-hard-pos-neg-doc-pairs-statictable](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable) at [7b28b96](https://huggingface.co/datasets/yahyaabd/query-hard-pos-neg-doc-pairs-statictable/tree/7b28b964daa3073a4d012d1ffca46ecd4f26bb5f)
* Size: 5,479 evaluation samples
* Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | query | doc | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 7 tokens</li><li>mean: 20.78 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.28 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>0: ~71.50%</li><li>1: ~28.50%</li></ul> |
* Samples:
| query | doc | label |
|:-----------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
| <code>bagaimana perbandingan pns pria dan wanita di berbagai golongan tahun 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
| <code>BAGAIMANA PERBANDINGAN PNS PRIA DAN WANITA DI BERBAGAI GOLONGAN TAHUN 2014?</code> | <code>Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017</code> | <code>0</code> |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 2
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `eval_on_start`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: True
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | allstats-semantic-mini-v1_test_cosine_ap | allstats-semantic-mini-v1_dev_cosine_ap |
|:--------:|:--------:|:-------------:|:---------------:|:----------------------------------------:|:---------------------------------------:|
| -1 | -1 | - | - | 0.8789 | - |
| 0 | 0 | - | 1.0484 | - | 0.8789 |
| 0.025 | 20 | 0.9076 | 0.7143 | - | 0.8976 |
| 0.05 | 40 | 0.4666 | 0.4744 | - | 0.9234 |
| 0.075 | 60 | 0.4514 | 0.3208 | - | 0.9542 |
| 0.1 | 80 | 0.3153 | 0.2520 | - | 0.9666 |
| 0.125 | 100 | 0.1726 | 0.2074 | - | 0.9725 |
| 0.15 | 120 | 0.1056 | 0.1860 | - | 0.9750 |
| 0.175 | 140 | 0.1414 | 0.2540 | - | 0.9674 |
| 0.2 | 160 | 0.1091 | 0.2077 | - | 0.9747 |
| 0.225 | 180 | 0.108 | 0.2333 | - | 0.9690 |
| 0.25 | 200 | 0.1672 | 0.1618 | - | 0.9771 |
| 0.275 | 220 | 0.1086 | 0.1804 | - | 0.9775 |
| 0.3 | 240 | 0.083 | 0.1805 | - | 0.9760 |
| 0.325 | 260 | 0.083 | 0.1674 | - | 0.9709 |
| 0.35 | 280 | 0.1197 | 0.1735 | - | 0.9734 |
| 0.375 | 300 | 0.0811 | 0.1272 | - | 0.9805 |
| 0.4 | 320 | 0.049 | 0.1491 | - | 0.9791 |
| 0.425 | 340 | 0.0373 | 0.1651 | - | 0.9721 |
| 0.45 | 360 | 0.1116 | 0.1742 | - | 0.9756 |
| 0.475 | 380 | 0.0665 | 0.1175 | - | 0.9837 |
| 0.5 | 400 | 0.0698 | 0.1165 | - | 0.9841 |
| 0.525 | 420 | 0.1316 | 0.1353 | - | 0.9817 |
| 0.55 | 440 | 0.0753 | 0.1276 | - | 0.9824 |
| 0.575 | 460 | 0.0411 | 0.1353 | - | 0.9801 |
| 0.6 | 480 | 0.0099 | 0.1292 | - | 0.9811 |
| 0.625 | 500 | 0.0473 | 0.1118 | - | 0.9836 |
| 0.65 | 520 | 0.0201 | 0.1083 | - | 0.9836 |
| 0.675 | 540 | 0.0519 | 0.1089 | - | 0.9856 |
| 0.7 | 560 | 0.0652 | 0.1003 | - | 0.9875 |
| 0.725 | 580 | 0.0594 | 0.1201 | - | 0.9872 |
| 0.75 | 600 | 0.0536 | 0.0896 | - | 0.9893 |
| 0.775 | 620 | 0.0479 | 0.0855 | - | 0.9874 |
| 0.8 | 640 | 0.0301 | 0.0948 | - | 0.9876 |
| 0.825 | 660 | 0.014 | 0.0993 | - | 0.9883 |
| 0.85 | 680 | 0.0199 | 0.0930 | - | 0.9884 |
| 0.875 | 700 | 0.0375 | 0.0765 | - | 0.9918 |
| 0.9 | 720 | 0.0 | 0.0805 | - | 0.9916 |
| 0.925 | 740 | 0.0243 | 0.0816 | - | 0.9916 |
| 0.95 | 760 | 0.0209 | 0.0935 | - | 0.9896 |
| 0.975 | 780 | 0.02 | 0.0831 | - | 0.9897 |
| 1.0 | 800 | 0.0376 | 0.0849 | - | 0.9890 |
| 1.025 | 820 | 0.0113 | 0.0960 | - | 0.9883 |
| 1.05 | 840 | 0.01 | 0.1131 | - | 0.9868 |
| 1.075 | 860 | 0.0294 | 0.1069 | - | 0.9861 |
| 1.1 | 880 | 0.0367 | 0.0921 | - | 0.9899 |
| 1.125 | 900 | 0.0 | 0.0910 | - | 0.9898 |
| 1.15 | 920 | 0.0163 | 0.1122 | - | 0.9871 |
| 1.175 | 940 | 0.0072 | 0.1204 | - | 0.9852 |
| 1.2 | 960 | 0.0175 | 0.1047 | - | 0.9872 |
| 1.225 | 980 | 0.0065 | 0.0992 | - | 0.9882 |
| 1.25 | 1000 | 0.0104 | 0.0932 | - | 0.9890 |
| 1.275 | 1020 | 0.0281 | 0.0866 | - | 0.9897 |
| 1.3 | 1040 | 0.0169 | 0.0874 | - | 0.9899 |
| 1.325 | 1060 | 0.0069 | 0.0910 | - | 0.9904 |
| 1.35 | 1080 | 0.0 | 0.0983 | - | 0.9898 |
| 1.375 | 1100 | 0.0 | 0.0985 | - | 0.9897 |
| 1.4 | 1120 | 0.0146 | 0.0919 | - | 0.9904 |
| 1.425 | 1140 | 0.0075 | 0.0852 | - | 0.9908 |
| 1.45 | 1160 | 0.014 | 0.0845 | - | 0.9908 |
| 1.475 | 1180 | 0.0065 | 0.0816 | - | 0.9907 |
| 1.5 | 1200 | 0.0 | 0.0811 | - | 0.9907 |
| 1.525 | 1220 | 0.0103 | 0.0785 | - | 0.9910 |
| **1.55** | **1240** | **0.013** | **0.0721** | **-** | **0.9915** |
| 1.575 | 1260 | 0.0066 | 0.0793 | - | 0.9910 |
| 1.6 | 1280 | 0.0 | 0.0810 | - | 0.9909 |
| 1.625 | 1300 | 0.0239 | 0.0803 | - | 0.9912 |
| 1.65 | 1320 | 0.0155 | 0.0816 | - | 0.9908 |
| 1.675 | 1340 | 0.009 | 0.0859 | - | 0.9904 |
| 1.7 | 1360 | 0.0065 | 0.0855 | - | 0.9900 |
| 1.725 | 1380 | 0.0 | 0.0866 | - | 0.9899 |
| 1.75 | 1400 | 0.0127 | 0.0865 | - | 0.9907 |
| 1.775 | 1420 | 0.0064 | 0.0819 | - | 0.9909 |
| 1.8 | 1440 | 0.0 | 0.0828 | - | 0.9910 |
| 1.825 | 1460 | 0.0081 | 0.0818 | - | 0.9912 |
| 1.85 | 1480 | 0.0068 | 0.0875 | - | 0.9909 |
| 1.875 | 1500 | 0.0 | 0.0886 | - | 0.9909 |
| 1.9 | 1520 | 0.011 | 0.0846 | - | 0.9911 |
| 1.925 | 1540 | 0.0 | 0.0843 | - | 0.9911 |
| 1.95 | 1560 | 0.0 | 0.0843 | - | 0.9911 |
| 1.975 | 1580 | 0.0 | 0.0843 | - | 0.9911 |
| 2.0 | 1600 | 0.0162 | 0.0850 | - | 0.9911 |
| -1 | -1 | - | - | 0.9915 | - |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->