yahyaabd's picture
Add new SentenceTransformer model
c3eb520 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:25580
  - loss:OnlineContrastiveLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
widget:
  - source_sentence: ikhtisar arus kas triwulan 1, 2004 (miliar)
    sentences:
      - Balita (0-59 Bulan) Menurut Status Gizi, Tahun 1998-2005
      - >-
        Perbandingan Indeks dan Tingkat Inflasi Desember 2023 Kota-kota di Luar
        Pulau Jawa dan Sumatera dengan Nasional (2018=100)
      - >-
        Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi
        Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi
        Sulawesi Tengah, 2018-2023
  - source_sentence: >-
      BaIgaimana gambaran neraca arus dana dUi Indonesia pada kuartal kedua
      tahun 2015?
    sentences:
      - >-
        Jumlah Sekolah, Guru, dan Murid Sekolah Menengah Pertama (SMP) di Bawah
        Kementrian Pendidikan dan Kebudayaan Menurut Provinsi
        2011/2012-2015/2016
      - Ringkasan Neraca Arus Dana Triwulan III Tahun 2003 (Miliar Rupiah)
      - >-
        Rata-rata Konsumsi dan Pengeluaran Perkapita Seminggu Menurut Komoditi
        Makanan dan Golongan Pengeluaran per Kapita Seminggu di Provinsi
        Sulawesi Tenggara, 2018-2023
  - source_sentence: >-
      Berapa persen pengeluaran orang di kotaa untuk makanan vs non-makanan, per
      provinsi, 2018?
    sentences:
      - >-
        Ekspor Tanaman Obat, Aromatik, dan Rempah-Rempah menurut Negara Tujuan
        Utama, 2012-2023
      - >-
        Rata-rata Pendapatan Bersih Pekerja Bebas Menurut Provinsi dan
        Pendidikan Tertinggi yang Ditamatkan (ribu rupiah), 2017
      - >-
        IHK dan Rata-rata Upah per Bulan Buruh Industri di Bawah Mandor
        (Supervisor), 1996-2014 (1996=100)
  - source_sentence: Negara-negara asal impor crude oil dan produk turunannya tahun 2002-2023
    sentences:
      - >-
        Persentase Pengeluaran Rata-rata per Kapita Sebulan Menurut Kelompok
        Barang, Indonesia, 1999, 2002-2023
      - >-
        Rata-rata Pendapatan Bersih Berusaha Sendiri menurut Provinsi dan
        Pendidikan yang Ditamatkan (ribu rupiah), 2016
      - >-
        Perkembangan Beberapa Agregat Pendapatan dan Pendapatan per Kapita Atas
        Dasar Harga Berlaku, 2010-2016
  - source_sentence: Arus dana Q3 2006
    sentences:
      - >-
        Posisi Simpanan Berjangka Rupiah pada Bank Umum dan BPR Menurut Golongan
        Pemilik (miliar rupiah), 2005-2018
      - Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)
      - >-
        Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut
        Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012
datasets:
  - yahyaabd/query-hard-pos-neg-doc-pairs-statictable
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - cosine_mcc
model-index:
  - name: >-
      SentenceTransformer based on
      sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: allstats semantic mini v1 test
          type: allstats-semantic-mini-v1_test
        metrics:
          - type: cosine_accuracy
            value: 0.9770031027559773
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.7470195889472961
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9648633575013944
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.7452057600021362
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.9552733296521259
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9746478873239437
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9927055758758331
            name: Cosine Ap
          - type: cosine_mcc
            value: 0.9478797507864009
            name: Cosine Mcc
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: allstats semantic mini v1 dev
          type: allstats-semantic-mini-v1_dev
        metrics:
          - type: cosine_accuracy
            value: 0.9770031027559773
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.7470195889472961
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9648633575013944
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.7452057600021362
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.9552733296521259
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9746478873239437
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9927055758758331
            name: Cosine Ap
          - type: cosine_mcc
            value: 0.9478797507864009
            name: Cosine Mcc

SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 on the query-hard-pos-neg-doc-pairs-statictable dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("yahyaabd/allstats-search-miniLM-v1-5")
# Run inference
sentences = [
    'Arus dana Q3 2006',
    'Ringkasan Neraca Arus Dana, Triwulan III, 2006, (Miliar Rupiah)',
    'Rata-Rata Pengeluaran per Kapita Sebulan di Daerah Perkotaan Menurut Kelompok Barang dan Golongan Pengeluaran per Kapita Sebulan, 2000-2012',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric allstats-semantic-mini-v1_test allstats-semantic-mini-v1_dev
cosine_accuracy 0.977 0.977
cosine_accuracy_threshold 0.747 0.747
cosine_f1 0.9649 0.9649
cosine_f1_threshold 0.7452 0.7452
cosine_precision 0.9553 0.9553
cosine_recall 0.9746 0.9746
cosine_ap 0.9927 0.9927
cosine_mcc 0.9479 0.9479

Training Details

Training Dataset

query-hard-pos-neg-doc-pairs-statictable

  • Dataset: query-hard-pos-neg-doc-pairs-statictable at 7b28b96
  • Size: 25,580 training samples
  • Columns: query, doc, and label
  • Approximate statistics based on the first 1000 samples:
    query doc label
    type string string int
    details
    • min: 7 tokens
    • mean: 20.14 tokens
    • max: 55 tokens
    • min: 5 tokens
    • mean: 24.9 tokens
    • max: 47 tokens
    • 0: ~70.80%
    • 1: ~29.20%
  • Samples:
    query doc label
    Status pekerjaan utama penduduk usia 15+ yang bekerja, 2020 Jumlah Penghuni Lapas per Kanwil 0
    status pekerjaan utama penduduk usia 15+ yang bekerja, 2020 Jumlah Penghuni Lapas per Kanwil 0
    STATUS PEKERJAAN UTAMA PENDUDUK USIA 15+ YANG BEKERJA, 2020 Jumlah Penghuni Lapas per Kanwil 0
  • Loss: OnlineContrastiveLoss

Evaluation Dataset

query-hard-pos-neg-doc-pairs-statictable

  • Dataset: query-hard-pos-neg-doc-pairs-statictable at 7b28b96
  • Size: 5,479 evaluation samples
  • Columns: query, doc, and label
  • Approximate statistics based on the first 1000 samples:
    query doc label
    type string string int
    details
    • min: 7 tokens
    • mean: 20.78 tokens
    • max: 52 tokens
    • min: 4 tokens
    • mean: 26.28 tokens
    • max: 43 tokens
    • 0: ~71.50%
    • 1: ~28.50%
  • Samples:
    query doc label
    Bagaimana perbandingan PNS pria dan wanita di berbagai golongan tahun 2014? Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017 0
    bagaimana perbandingan pns pria dan wanita di berbagai golongan tahun 2014? Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017 0
    BAGAIMANA PERBANDINGAN PNS PRIA DAN WANITA DI BERBAGAI GOLONGAN TAHUN 2014? Rata-rata Pendapatan Bersih Berusaha Sendiri Menurut Provinsi dan Lapangan Pekerjaan Utama (ribu rupiah), 2017 0
  • Loss: OnlineContrastiveLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 24
  • per_device_eval_batch_size: 24
  • num_train_epochs: 2
  • warmup_ratio: 0.2
  • fp16: True
  • load_best_model_at_end: True
  • eval_on_start: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 24
  • per_device_eval_batch_size: 24
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.2
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: True
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss allstats-semantic-mini-v1_test_cosine_ap allstats-semantic-mini-v1_dev_cosine_ap
-1 -1 - - 0.8789 -
0 0 - 0.7267 - 0.8789
0.0188 20 0.668 0.6453 - 0.8848
0.0375 40 0.6117 0.4411 - 0.9003
0.0563 60 0.3108 0.3592 - 0.9130
0.0750 80 0.3824 0.2899 - 0.9336
0.0938 100 0.2118 0.2530 - 0.9442
0.1126 120 0.232 0.1945 - 0.9582
0.1313 140 0.1233 0.1663 - 0.9656
0.1501 160 0.1293 0.1655 - 0.9654
0.1689 180 0.0714 0.2142 - 0.9578
0.1876 200 0.1198 0.1455 - 0.9702
0.2064 220 0.1081 0.1258 - 0.9766
0.2251 240 0.0484 0.1210 - 0.9753
0.2439 260 0.1463 0.1100 - 0.9792
0.2627 280 0.0422 0.1228 - 0.9777
0.2814 300 0.1187 0.1302 - 0.9725
0.3002 320 0.0635 0.1257 - 0.9733
0.3189 340 0.0422 0.1125 - 0.9736
0.3377 360 0.0479 0.0882 - 0.9796
0.3565 380 0.119 0.1319 - 0.9697
0.3752 400 0.099 0.1445 - 0.9702
0.3940 420 0.0409 0.1434 - 0.9706
0.4128 440 0.1053 0.1520 - 0.9686
0.4315 460 0.1035 0.1382 - 0.9727
0.4503 480 0.0848 0.1150 - 0.9789
0.4690 500 0.0387 0.0944 - 0.9826
0.4878 520 0.0097 0.1041 - 0.9811
0.5066 540 0.0667 0.1041 - 0.9783
0.5253 560 0.1028 0.1386 - 0.9736
0.5441 580 0.0543 0.1350 - 0.9769
0.5629 600 0.0859 0.1254 - 0.9776
0.5816 620 0.0853 0.1483 - 0.9728
0.6004 640 0.024 0.1159 - 0.9781
0.6191 660 0.0762 0.1046 - 0.9784
0.6379 680 0.0433 0.1275 - 0.9686
0.6567 700 0.0772 0.0592 - 0.9882
0.6754 720 0.0185 0.0542 - 0.9889
0.6942 740 0.0376 0.1123 - 0.9801
0.7129 760 0.0612 0.1002 - 0.9817
0.7317 780 0.0156 0.0948 - 0.9809
0.7505 800 0.0474 0.0778 - 0.9817
0.7692 820 0.0427 0.0824 - 0.9828
0.7880 840 0.0289 0.0911 - 0.9833
0.8068 860 0.0175 0.0991 - 0.9827
0.8255 880 0.0241 0.0951 - 0.9824
0.8443 900 0.0527 0.0816 - 0.9860
0.8630 920 0.0535 0.0707 - 0.9875
0.8818 940 0.0211 0.0767 - 0.9868
0.9006 960 0.013 0.0758 - 0.9872
0.9193 980 0.0079 0.0781 - 0.9848
0.9381 1000 0.0406 0.0820 - 0.9845
0.9568 1020 0.0277 0.0685 - 0.9874
0.9756 1040 0.0132 0.0760 - 0.9859
0.9944 1060 0.0268 0.0881 - 0.9833
1.0131 1080 0.0089 0.0772 - 0.9857
1.0319 1100 0.0276 0.0773 - 0.9850
1.0507 1120 0.0181 0.0729 - 0.9860
1.0694 1140 0.0065 0.0683 - 0.9867
1.0882 1160 0.01 0.0639 - 0.9873
1.1069 1180 0.0068 0.0662 - 0.9870
1.1257 1200 0.0 0.0722 - 0.9863
1.1445 1220 0.0067 0.0710 - 0.9866
1.1632 1240 0.0069 0.0666 - 0.9877
1.1820 1260 0.0 0.0639 - 0.9880
1.2008 1280 0.0244 0.0610 - 0.9882
1.2195 1300 0.0143 0.0630 - 0.9877
1.2383 1320 0.0173 0.0530 - 0.9896
1.2570 1340 0.0171 0.0496 - 0.9907
1.2758 1360 0.0225 0.0521 - 0.9909
1.2946 1380 0.011 0.0569 - 0.9900
1.3133 1400 0.0088 0.0605 - 0.9898
1.3321 1420 0.0 0.0619 - 0.9897
1.3508 1440 0.0135 0.0608 - 0.9894
1.3696 1460 0.0 0.0593 - 0.9892
1.3884 1480 0.0145 0.0578 - 0.9894
1.4071 1500 0.0 0.0608 - 0.9896
1.4259 1520 0.0069 0.0567 - 0.9906
1.4447 1540 0.0 0.0561 - 0.9907
1.4634 1560 0.0224 0.0531 - 0.9912
1.4822 1580 0.0 0.0523 - 0.9911
1.5009 1600 0.0066 0.0503 - 0.9912
1.5197 1620 0.0 0.0472 - 0.9915
1.5385 1640 0.018 0.0452 - 0.9923
1.5572 1660 0.0117 0.0449 - 0.9925
1.5760 1680 0.0 0.0456 - 0.9925
1.5947 1700 0.0 0.0448 - 0.9925
1.6135 1720 0.0 0.0448 - 0.9925
1.6323 1740 0.0072 0.0458 - 0.9924
1.6510 1760 0.0 0.0456 - 0.9923
1.6698 1780 0.0163 0.0482 - 0.9925
1.6886 1800 0.0063 0.0463 - 0.9926
1.7073 1820 0.0078 0.0482 - 0.9925
1.7261 1840 0.0179 0.0472 - 0.9927
1.7448 1860 0.0 0.0477 - 0.9927
1.7636 1880 0.0 0.0477 - 0.9927
1.7824 1900 0.0065 0.0461 - 0.9926
1.8011 1920 0.0077 0.0458 - 0.9926
1.8199 1940 0.0065 0.0453 - 0.9927
1.8386 1960 0.0 0.0451 - 0.9927
1.8574 1980 0.0 0.0451 - 0.9927
1.8762 2000 0.0 0.0451 - 0.9927
1.8949 2020 0.0 0.0451 - 0.9927
1.9137 2040 0.0 0.0451 - 0.9927
1.9325 2060 0.0 0.0451 - 0.9927
1.9512 2080 0.0 0.0451 - 0.9927
1.9700 2100 0.007 0.0442 - 0.9927
1.9887 2120 0.0067 0.0441 - 0.9927
-1 -1 - - 0.9927 -
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.4.0
  • Transformers: 4.48.1
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}